DOI QR코드

DOI QR Code

Transition Metal-Based Layered Double Hydroxides for Oxygen Evolution Reaction Catalysts

전이금속 이중층 수산화물 기반 산소발생반응 촉매 연구 동향

  • Da-Un Han (Functional Materials and Components Group, Korea Institute of Industrial Technology) ;
  • Gyeongbae Park (Functional Materials and Components Group, Korea Institute of Industrial Technology)
  • 한다운 (한국생산기술연구원 기능성소재부품그룹) ;
  • 박경배 (한국생산기술연구원 기능성소재부품그룹)
  • Received : 2024.04.16
  • Accepted : 2024.05.03
  • Published : 2024.07.01

Abstract

Oxygen evolution reaction is a critical bottleneck for the development of efficient electrochemical hydrogen production because of its sluggish reaction. Among various catalysts, transition metal-based layered double hydroxide has drawn significant attention due to their excellent catalytic properties and cost-effectiveness. This paper begins with basic crystal structures, and then conventional adsorbate evolution mechanism of layered double hydroxide. Strategies for enhancing catalytic properties based on adsorbate evolution mechanism and lattice oxygen mechanism that could surpass theoretical limit of adsorbate evolution mechanism are discussed. This paper ends with a brief discussion on the challenges and future directions of layered double hydroxide-based oxygen evolution reaction catalysts.

Keywords

Acknowledgement

이 연구는 2024년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20019175).

References

  1. J. S. Kim, B. Kim, H. Kim, and K. Kang, Adv. Energy Mater., 8, 1702774 (2018). doi: https://doi.org/10.1002/aenm.201702774 
  2. Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, and X. Wang, J. Mater. Chem. A, 7, 5069 (2019). doi: https://doi.org/10.1039/C8TA11273H 
  3. J. Song, C. Wei, Z. F. Huang, C. Liu, L. Zeng, X. Wang, and Z. J. Xu, Chem. Soc. Rev., 49, 2196 (2020). doi: https://doi.org/10.1039/C9CS00607A 
  4. S. Hou, J. Jiang, Y. Wang, X. He, J. Ge, and W. Xing, Langmuir, 38, 12118 (2022). doi: https://doi.org/10.1021/acs.langmuir.2c00962 
  5. C.C.L. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo, J. Am. Chem. Soc., 135, 16977 (2013). doi: https://doi.org/10.1021/ja407115p 
  6. M. Yu, G. Moon, E. Bill, and H. Tuysuz, ACS Appl. Energy Mater., 2, 1199 (2019). doi: https://doi.org/10.1021/acsaem.8b01769 
  7. F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M. B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J. F. de Araujo, M. Gliech, D. Teschner, J. Zhu, W. X. Li, J. Greeley, B. R. Cuenya, and P. Strasser, Nat. Commun., 11, 2522 (2020). doi: https://doi.org/10.1038/s41467-020-16237-1 
  8. T. Priamushko, P. Guggenberger, A. Mautner, J. Lee, R. Ryoo, and F. Kleitz, ACS Appl. Energy Mater., 5, 13385 (2022). doi: https://doi.org/10.1021/acsaem.2c02055 
  9. N.L.W. Septiani, Y. V. Kaneti, K. B. Fathoni, Y. Guo, Y. Ide, B. Yuliarto, X. Jiang, Nugraha, H. K. Dipojono, D. Golberg, and Y. Yamauchi, J. Mater. Chem. A, 8, 3035 (2020). doi: https://doi.org/10.1039/C9TA13442E 
  10. J. Tang, J. L. Xu, Z. G. Ye, Y. C. Ma, X. B. Li, J. M. Luo, and Y. Z. Huang, J. Alloys Compd., 885, 160995 (2021). doi: https://doi.org/10.1016/j.jallcom.2021.160995 
  11. A. Baldelli, R. M. Power, R.E.H. Miles, J. P. Reid, and R. Vehring, Aerosol Sci. Technol., 50, 693 (2016). doi: https://doi.org/10.1080/02786826.2016.1177163 
  12. L. Zheng, G. Chen, J. Huang, W. Chen, T. Han, T. Li, and K. K. Ostrikov, J. Colloid Interface Sci., 653, 117 (2024). doi: https://doi.org/10.1016/j.jcis.2023.09.046 
  13. G. B. Darband, M. Aliofkhazraei, S. Hyun, A. S. Rouhaghdam, and S. Shanmugam, Nanoscale, 11, 16621 (2019). doi: https://doi.org/10.1039/C9NR04529E 
  14. S. Bhardwaj, R. Srivastava, T. Mageto, M. Chaudhari, A. Kumar, J. Sultana, S. R. Mishra, F. Perez, and R. K. Gupta, Discover Nano, 18, 59 (2023). doi: https://doi.org/10.1186/s11671-023-03837-1 
  15. J. Zhang, S. Zhang, Z. Zhang, J. Wang, Z. Zhang, and G. Cheng, J. Alloys Compd., 939, 168753 (2023). doi: https://doi.org/10.1016/j.jallcom.2023.168753 
  16. Y. Huang, L. W. Jiang, B. Y. Shi, K. M. Ryan, and J. J. Wang, Adv. Sci., 8, 2101775 (2021). doi: https://doi.org/10.1002/advs.202101775 
  17. Y. Guo, K. Jia, F. Dai, Y. Liu, C. Zhang, J. Su, and K. Wang, J. Colloid Interface Sci., 642, 638 (2023). doi: https://doi.org/10.1016/j.jcis.2023.04.003 
  18. D. Zhou, Y. Jia, X. Duan, J. Tang, J. Xu, D. Liu, X. Xiong, J. Zhang, J. Luo, L. Zheng, B. Liu, Y. Kuang, X. Sun, and X. Duan, Nano Energy, 60, 661 (2019). doi: https://doi.org/10.1016/j.nanoen.2019.04.014 
  19. Z. Cai, D. Zhou, M. Wang, S. M. Bak, Y. Wu, Z. Wu, Y. Tian, X. Xiong, Y. Li, W. Liu, S. Siahrostami, Y. Kuang, X. Q. Yang, H. Duan, Z. Feng, H. Wang, and X. Sun, Angew. Chem. Int. Ed., 57, 9392 (2018). doi: https://doi.org/10.1002/anie.201804881 
  20. R. Liu, Y. Wang, D. Liu, Y. Zou, and S. Wang, Adv. Mater., 29, 1701546 (2017). doi: https://doi.org/10.1002/adma.201701546 
  21. F. Song and X. Hu, J. Am. Chem. Soc., 136, 16481 (2014). doi: https://doi.org/10.1021/ja5096733 
  22. M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, J. Am. Chem. Soc., 135, 8452 (2013). doi: https://doi.org/10.1021/ja4027715 
  23. A. I. Khan and D. O'Hare, J. Mater. Chem., 12, 3191 (2002). doi: https://doi.org/10.1039/B204076J 
  24. P. J. Sideris, U. G. Nielsen, Z. Gan, and C. P. Grey, Science, 321, 113 (2008). doi: https://doi.org/10.1126/science.1157581 
  25. D. Zhou, P. Li, X. Lin, A. McKinley, Y. Kuang, W. Liu, W. F. Lin, X. Sun, and X. Duan, Chem. Soc. Rev., 50, 8790 (2021). doi: https://doi.org/10.1039/D1CS00186H 
  26. B. R. Anne, J. Kundu, M. K. Kabiraz, J. Kim, D. Cho, and S. I. Choi, Adv. Funct. Mater., 33, 2306100 (2023). doi: https://doi.org/10.1002/adfm.202306100 
  27. H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, and P. Strasser, ChemCatChem, 2, 724 (2010). doi: https://doi.org/10.1002/cctc.201000126 
  28. I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Norskov, and J. Rossmeisl, ChemCatChem, 3, 1159 (2011). doi: https://doi.org/10.1002/cctc.201000397 
  29. K. N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong, and Q. Yan, Small, 14, 1703257 (2018). doi: https://doi.org/10.1002/smll.201703257 
  30. L. Qian, Z. Lu, T. Xu, X. Wu, Y. Tian, Y. Li, Z. Huo, X. Sun, and X. Duan, Adv. Energy Mater., 5, 1500245 (2015). doi: https://doi.org/10.1002/aenm.201500245 
  31. S. Hao, L. Chen, C. Yu, B. Yang, Z. Li, Y. Hou, L. Lei, and X. Zhang, ACS Energy Lett., 4, 952 (2019). doi: https://doi.org/10.1021/acsenergylett.9b00333 
  32. B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. Garcia-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F.P.G. De Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic, and E. H. Sargent, Science, 352, 333 (2016). doi: https://doi.org/10.1126/science.aaf1525 
  33. Y. Yang, L. Dang, M. J. Shearer, H. Sheng, W. Li, J. Chen, P. Xiao, Y. Zhang, R. J. Hamers, and S. Jin, Adv. Energy Mater., 8, 1703189 (2018). doi: https://doi.org/10.1002/aenm.201703189 
  34. L. Wu, L. Yu, F. Zhang, D. Wang, D. Luo, S. Song, C. Yuan, A. Karim, S. Chen, and Z. Ren, J. Mater. Chem. A, 8, 8096 (2020). doi: https://doi.org/10.1039/D0TA00691B 
  35. J. Jiang, F. Sun, S. Zhou, W. Hu, H. Zhang, J. Dong, Z. Jiang, J. Zhao, J. Li, W. Yan, and M. Wang, Nat. Commun., 9, 2885 (2018). doi: https://doi.org/10.1038/s41467-018-05341-y 
  36. J. Bao, Z. Wang, J. Xie, L. Xu, F. Lei, M. Guan, Y. Zhao, Y. Huang, and H. Li, Chem. Commun., 55, 3521 (2019). doi: https://doi.org/10.1039/C9CC00269C 
  37. Y. Bi, Z. Cai, D. Zhou, Y. Tian, Q. Zhang (m), Q. Zhang (f), Y. Kuang, Y. Li, X. Sun, and X. Duan, J. Catal., 358, 100 (2018). doi: https://doi.org/10.1016/j.jcat.2017.11.028 
  38. P. Li, X. Duan, Y. Kuang, Y. Li, G. Zhang, W. Liu, and X. Sun, Adv. Energy Mater., 8, 1703341 (2018). doi: https://doi.org/10.1002/aenm.201703341 
  39. L. M. Cao, J. W. Wang, D. C. Zhong, and T. B. Lu, J. Mater. Chem. A, 6, 3224 (2018). doi: https://doi.org/10.1039/C7TA09734D 
  40. S. Y. Jung, S. Kang, K. M. Kim, S. Mhin, J. C. Kim, S. J. Kim, E. Enkhtuvshin, S. Choi, and H. Han, Appl. Surf. Sci., 568, 150965 (2021). doi: https://doi.org/10.1016/j.apsusc.2021.150965 
  41. Y. Gong, H. Zhao, Y. Sun, D. Xu, D. Ye, Y. Tang, T. He, and J. Zhang, J. Colloid Interface Sci., 650, 636 (2023). doi: https://doi.org/10.1016/j.jcis.2023.07.013 
  42. Z. Wan, Z. Ma, H. Yuan, K. Liu, and X. Wang, ACS Appl. Energy Mater., 5, 4603 (2022). doi: https://doi.org/10.1021/acsaem.2c00018 
  43. D. Zhang, X. Tang, Z. Yang, Y. Yang, and H. Li, Mater. Adv., 3, 1286 (2022) doi: https://doi.org/10.1039/D1MA00688F 
  44. L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, and Z. Zhu, Adv. Mater., 29, 1606793 (2017). doi: https://doi.org/10.1002/adma.201606793 
  45. H. Liu, Y. Wang, X. Lu, Y. Hu, G. Zhu, R. Chen, L. Ma, H. Zhu, Z. Tie, J. Liu, and Z. Jin, Nano Energy, 35, 350 (2017). doi: https://doi.org/10.1016/j.nanoen.2017.04.011 
  46. Q. Xie, Z. Cai, P. Li, D. Zhou, Y. Bi, X. Xiong, E. Hu, Y. Li, Y. Kuang, and X. Sun, Nano Res., 11, 4524 (2018). doi: https://doi.org/10.1007/s12274-018-2033-9 
  47. M. Zubair, P. Kumar, M. Klingenhof, B. Subhash, J. A. Yuwono, S. Cheong, Y. Yao, L. Thomsen, P. Strasser, R. D. Tilley, and N. M. Bedford, ACS Catal., 13, 4799 (2023). doi: https://doi.org/10.1021/acscatal.2c05863 
  48. K. Gu, X. Zhu, D. Wang, N. Zhang, G. Huang, W. Li, P. Long, J. Tian, Y. Zou, Y. Wang, R. Chen, and S. Wang, J. Energy Chem., 60, 121 (2021). doi: https://doi.org/10.1016/j.jechem.2020.12.029 
  49. C. Zhang, J. Zheng, and Z. Wang, Catal. Today, 423, 113997 (2023). doi: https://doi.org/10.1016/j.cattod.2023.01.004 
  50. F. Song and X. Hu, Nat. Commun., 5, 4477 (2014). doi: https://doi.org/10.1038/ncomms5477 
  51. Y. Dong, S. Komarneni, F. Zhang, N. Wang, M. Terrones, W. Hu, and W. Huang, Appl. Catal., B, 263, 118343 (2020). doi: https://doi.org/10.1016/j.apcatb.2019.118343 
  52. X. Li, X. Hao, Z. Wang, A. Abudula, and G. Guan, J. Power Sources, 347, 193 (2017). doi: https://doi.org/10.1016/j.jpowsour.2017.02.062 
  53. L. Dang, H. Liang, J. Zhuo, B. K. Lamb, H. Sheng, Y. Yang, and S. Jin, Chem. Mater., 30, 4321 (2018). doi: https://doi.org/10.1021/acs.chemmater.8b01334 
  54. B. M. Hunter, W. Hieringer, J. R. Winkler, H. B. Gray, and A. M. Muller, Energy Environ. Sci., 9, 1734 (2016). doi: https://doi.org/10.1039/C6EE00377J 
  55. D. Zhou, Z. Cai, Y. Bi, W. Tian, M. Luo, Q. Zhang, Q. Zhang, Q. Xie, J. Wang, Y. Li, Y. Kuang, X. Duan, M. Bajdich, S. Siahrostami, and X. Sun, Nano Res., 11, 1358 (2018). doi: https://doi.org/10.1007/s12274-017-1750-9 
  56. P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng, Y. Zhang, Y. Kuang, Y. Li, Q. Ma, Z. Feng, W. Liu, and X. Sun, Nat. Commun., 10, 1711 (2019). doi: https://doi.org/10.1038/s41467-019-09666-0 
  57. W. Chen, B. Wu, Y. Wang, W. Zhou, Y. Li, T. Liu, C. Xie, L. Xu, S. Du, M. Song, D. Wang, Y. Liu, Y. Li, J. Liu, Y. Zou, R. Chen, C. Chen, J. Zheng, Y. Li, J. Chen, and S. Wang, Energy Environ. Sci., 14, 6428 (2021). doi: https://doi.org/10.1039/D1EE01395E 
  58. J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K. M. Lange, and B. Zhang, J. Am. Chem. Soc., 140, 3876 (2018). doi: https://doi.org/10.1021/jacs.8b00752 
  59. X. Zheng, J. Tang, A. Gallo, J.A.G. Torres, X. Yu, C. J. Athanitis, E. M. Been, P. Ercius, H. Mao, S. C. Fakra, C. Song, R. C. Davis, J. A. Reimer, J. Vinson, M. Bajdich, and Y. Cui, Proc. Natl. Acad. Sci., 118, e2101817118 (2021). doi: https://doi.org/10.1073/pnas.2101817118 
  60. S. She, Y. Zhu, Y. Chen, Q. Lu, W. Zhou, and Z. Shao, Adv. Energy Mater., 9, 1900429 (2019). doi: https://doi.org/10.1002/aenm.201900429 
  61. Y. Zhu, X. Zhong, S. Jin, H. Chen, Z. He, Q. Liu, and Y. Chen, J. Mater. Chem. A, 8, 10957 (2020). doi: https://doi.org/10.1039/D0TA04362A 
  62. Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen, J.P.M. Veder, D. Guan, R. O'Hayre, M. Li, G. Wang, H. Wang, W. Zhou, and Z. Shao, Nat. Commun., 11, 2002 (2020). doi: https://doi.org/10.1038/s41467-020-15873-x 
  63. T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud, and Z. J. Xu, Nat. Catal., 2, 763 (2019). doi: https://doi.org/10.1038/s41929-019-0325-4 
  64. Z. F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J.M.V. Nsanzimana, C. Wang, Z. J. Xu, and X. Wang, Nat. Energy, 4, 329 (2019). doi: https://doi.org/10.1038/s41560-019-0355-9 
  65. X. Wan, Y. Song, H. Zhou, and M. Shao, Energy Mater. Adv., 2022, 9842610 (2022). doi: https://doi.org/10.34133/2022/9842610 
  66. Z. Zheng, D. Wu, G. Chen, N. Zhang, H. Wan, X. Liu, and R. Ma, Carbon Energy, 4, 901 (2022). doi: https://doi.org/10.1002/cey2.215 
  67. Z. He, J. Zhang, Z. Gong, H. Lei, D. Zhou, N. Zhang, W. Mai, S. Zhao, and Y. Chen, Nat. Commun., 13, 2191 (2022). doi: https://doi.org/10.1038/s41467-022-29875-4