DOI QR코드

DOI QR Code

Synthesis Methods of Silver Sulfide for SWIR Region Applications

SWIR 영역에서 활용 가능한 Silver Sulfide의 다양한 합성법

  • Yunhye Jeong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Gi-Hwan Kim (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 정윤혜 (경상국립대학교 나노신소재융합공학과) ;
  • 김기환 (경상국립대학교 나노신소재융합공학과)
  • Received : 2024.02.27
  • Accepted : 2024.04.15
  • Published : 2024.07.01

Abstract

This paper delves into the application of the short-wave infrared (SWIR) region, with a focus on the synthesis and optical characteristics of silver sulfide (Ag2S) nanostructures. SWIR offers advantages such as reduced damage to biological tissues and enhanced optical transparency, making it valuable across various domains. The study introduces three distinct synthesis methods, each showcasing the ability to obtain nanostructures with improved optical properties. These research findings open up the possibility of providing tailored solutions in detection, imaging, and other applications by controlling the size and ligands of Ag2S nanoparticles. This paper provides new insights into the utilization of Ag2S in the SWIR region, which is expected to foster advancements in future technologies.

이 논문은 단파 길이 적외선(SWIR) 영역에서의 활용을 중점적으로 다루며, 실버 황화물(Ag2S) 나노 구조의 합성과 광학적 특성에 대해 제시한다. SWIR 영역은 생체 조직에 미치는 손상이 감소하고 광학적 투명성이 향상되는 등의 장점을 제공하여 다양한 분야에서 활용되고 있다. 연구는 세 가지 다양한 합성 방법을 소개하며, 각각의 방법을 통해 다양한 광학적 특성을 갖는 나노 입자를 얻을 수 있음을 보여준다. 이러한 연구 결과는 Ag2S 나노 입자의 크기와 리간드를 조절함으로써 감지, 이미징 및 기타 응용 분야에서의 맞춤형 솔루션을 제공하는 가능성을 열어 놓는다. 이 논문은 SWIR 영역에서 활용 가능한 Ag2S에 대한 새로운 통찰력을 제공하며, 이를 통해 미래 기술의 발전을 촉진할 것으로 기대된다.

Keywords

References

  1. M. P. Hansen and D. S. Malchow, Proc. SPIE Defense and Security Symposium (SPIE, Orlando, USA, 2008) p. 94. doi: https://doi.org/10.1117/12.777776
  2. Y. Ni, C. Bouvier, B. Arion, and V. Noguier, Proc. SPIE Commercial + Scientific Sensing and Imaging (SPIE, Baltimore, USA, 2016). p. 253. doi: https://doi.org/10.1117/12.2224079
  3. K. Chrzanowski, Opto-Electron. Rev., 21, 153 (2013). doi: https://doi.org/10.2478/s11772-013-0089-3
  4. S. Mateos, J. Lifante, C. Li, E. C. Ximendes, T. Munoz-Ortiz, J. Yao, M. de la Fuente-Fernandez, A.L.G. Villalon, M. Granado, I. Z. Gutierrez, J. Rubio-Retama, D. Jaque, D. H. Ortgies, and N. Fernandez, Small, 16, 1907171 (2020). doi: https://doi.org/10.1002/smll.201907171
  5. J. Xing, C. Bravo, P. T. Jancsok, H. Ramon, and J. De Baerdemaeker, Biosyst. Eng., 90, 27 (2005). doi: https://doi.org/10.1016/j.biosystemseng.2004.08.002
  6. S. Fan, C. Li, W. Huang, and L. Chen, Postharvest Biol. Technol., 134, 55 (2017). doi: https://doi.org/10.1016/j.postharvbio.2017.08.012
  7. P. Kohler, C. Connette, and A. Verl, Proc. 2013 IEEE International Conference on Robotics and Automation (IEEE, Karlsruhe, Germany, 2013) p. 2900. doi: https://doi.org/10.1109/ICRA.2013.6630979
  8. M. Casalboni, F. De Matteis, P. Prosposito, A. Quatela, and F. Sarcinelli, Chem. Phys. Lett., 373, 372 (2003). doi: https://doi.org/10.1016/S0009-2614(03)00608-0
  9. D. R. Klaus, M. Keene, S. Silchenko, M. Berezin, and N. Gerasimchuk, Inorg. Chem., 54, 1890 (2015). doi: https://doi.org/10.1021/ic502805h
  10. A. M. Smith, M. C. Mancini, and S. Nie, Nat. Nanotechnol., 4, 710 (2009). doi: https://doi.org/10.1038/nnano.2009.326
  11. P. Zhao, Q. Xu, J. Tao, Z. Jin, Y. Pan, C. Yu, and Z. Yu, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 10, e1483 (2018). doi: https://doi.org/10.1002/wnan.1483
  12. Y. Zhang, Y. Liu, C. Li, X. Chen, and Q. Wang, J. Phys. Chem. C, 118, 4918 (2014). doi: https://doi.org/10.1021/jp501266d
  13. A. I. Gusev and S. I. Sadovnikov, Thermochim. Acta, 660, 1 (2018). doi: https://doi.org/10.1016/j.tca.2017.12.013
  14. S. I. Sadovnikov and E. Y. Gerasimov, Nanoscale Adv., 1, 1581 (2019). doi: https://doi.org/10.1039/C8NA00347E
  15. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys., 17, 20495 (2015). doi: https://doi.org/10.1039/C5CP02499D
  16. Y. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. Wang, J. Am. Chem. Soc., 132, 1470 (2010). doi: https://doi.org/10.1021/ja909490r
  17. P. Jiang, Z. Q. Tian, C. N. Zhu, Z. L. Zhang, and D. W. Pang, Chem. Mater., 24, 3 (2012). doi: https://doi.org/10.1021/cm202543m
  18. P. Jiang, C. N. Zhu, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, Biomaterials, 33, 5130 (2012). doi: https://doi.org/10.1016/j.biomaterials.2012.03.059
  19. R. Gui, H. Jin, Z. Wang, and L. Tan, Coord. Chem. Rev., 296, 91 (2015). doi: https://doi.org/10.1016/j.ccr.2015.03.023
  20. S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A, 5, 17676 (2017). doi: https://doi.org/10.1039/C7TA04949H
  21. J. Gao, K. Chen, R. Xie, J. Xie, Y. Yan, Z. Cheng, X. Peng, and X. Chen, Bioconjugate Chem., 21, 604 (2010). doi: https://doi.org/10.1021/bc900323v
  22. B. Nowack, Science, 330, 1054 (2010). doi: https://doi.org/10.1126/science.1198074
  23. N. Chen, Y. He, Y. Su, X. Li, Q. Huang, H. Wang, X. Zhang, R. Tai, and C. Fan, Biomaterials, 33, 1238 (2012). doi: https://doi.org/10.1016/j.biomaterials.2011.10.070
  24. P. Zrazhevskiy, M. Sena, and X. Gao, Chem. Soc. Rev., 39, 4326 (2010). doi: https://doi.org/10.1039/B915139G
  25. Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, ACS Nano, 6, 3695 (2012). doi: https://doi.org/10.1021/nn301218z
  26. H. Y. Yang, Y. W. Zhao, Z. Y. Zhang, H. M. Xiong, and S. N. Yu, Nanotechnology, 24, 055706 (2013). doi: https://doi.org/10.1088/0957-4484/24/5/055706
  27. M. Yarema, S. Pichler, M. Sytnyk, R. Seyrkammer, R. T. Lechner, G. Fritz-Popovski, D. Jarzab, K. Szendrei, R. Resel, O. Korovyanko, M. A. Loi, O. Paris, G. Hesser, and W. Heiss, ACS Nano, 5, 3758 (2011). doi: https://doi.org/10.1021/nn2001118