References
- M. P. Hansen and D. S. Malchow, Proc. SPIE Defense and Security Symposium (SPIE, Orlando, USA, 2008) p. 94. doi: https://doi.org/10.1117/12.777776
- Y. Ni, C. Bouvier, B. Arion, and V. Noguier, Proc. SPIE Commercial + Scientific Sensing and Imaging (SPIE, Baltimore, USA, 2016). p. 253. doi: https://doi.org/10.1117/12.2224079
- K. Chrzanowski, Opto-Electron. Rev., 21, 153 (2013). doi: https://doi.org/10.2478/s11772-013-0089-3
- S. Mateos, J. Lifante, C. Li, E. C. Ximendes, T. Munoz-Ortiz, J. Yao, M. de la Fuente-Fernandez, A.L.G. Villalon, M. Granado, I. Z. Gutierrez, J. Rubio-Retama, D. Jaque, D. H. Ortgies, and N. Fernandez, Small, 16, 1907171 (2020). doi: https://doi.org/10.1002/smll.201907171
- J. Xing, C. Bravo, P. T. Jancsok, H. Ramon, and J. De Baerdemaeker, Biosyst. Eng., 90, 27 (2005). doi: https://doi.org/10.1016/j.biosystemseng.2004.08.002
- S. Fan, C. Li, W. Huang, and L. Chen, Postharvest Biol. Technol., 134, 55 (2017). doi: https://doi.org/10.1016/j.postharvbio.2017.08.012
- P. Kohler, C. Connette, and A. Verl, Proc. 2013 IEEE International Conference on Robotics and Automation (IEEE, Karlsruhe, Germany, 2013) p. 2900. doi: https://doi.org/10.1109/ICRA.2013.6630979
- M. Casalboni, F. De Matteis, P. Prosposito, A. Quatela, and F. Sarcinelli, Chem. Phys. Lett., 373, 372 (2003). doi: https://doi.org/10.1016/S0009-2614(03)00608-0
- D. R. Klaus, M. Keene, S. Silchenko, M. Berezin, and N. Gerasimchuk, Inorg. Chem., 54, 1890 (2015). doi: https://doi.org/10.1021/ic502805h
- A. M. Smith, M. C. Mancini, and S. Nie, Nat. Nanotechnol., 4, 710 (2009). doi: https://doi.org/10.1038/nnano.2009.326
- P. Zhao, Q. Xu, J. Tao, Z. Jin, Y. Pan, C. Yu, and Z. Yu, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 10, e1483 (2018). doi: https://doi.org/10.1002/wnan.1483
- Y. Zhang, Y. Liu, C. Li, X. Chen, and Q. Wang, J. Phys. Chem. C, 118, 4918 (2014). doi: https://doi.org/10.1021/jp501266d
- A. I. Gusev and S. I. Sadovnikov, Thermochim. Acta, 660, 1 (2018). doi: https://doi.org/10.1016/j.tca.2017.12.013
- S. I. Sadovnikov and E. Y. Gerasimov, Nanoscale Adv., 1, 1581 (2019). doi: https://doi.org/10.1039/C8NA00347E
- S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys., 17, 20495 (2015). doi: https://doi.org/10.1039/C5CP02499D
- Y. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. Wang, J. Am. Chem. Soc., 132, 1470 (2010). doi: https://doi.org/10.1021/ja909490r
- P. Jiang, Z. Q. Tian, C. N. Zhu, Z. L. Zhang, and D. W. Pang, Chem. Mater., 24, 3 (2012). doi: https://doi.org/10.1021/cm202543m
- P. Jiang, C. N. Zhu, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, Biomaterials, 33, 5130 (2012). doi: https://doi.org/10.1016/j.biomaterials.2012.03.059
- R. Gui, H. Jin, Z. Wang, and L. Tan, Coord. Chem. Rev., 296, 91 (2015). doi: https://doi.org/10.1016/j.ccr.2015.03.023
- S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A, 5, 17676 (2017). doi: https://doi.org/10.1039/C7TA04949H
- J. Gao, K. Chen, R. Xie, J. Xie, Y. Yan, Z. Cheng, X. Peng, and X. Chen, Bioconjugate Chem., 21, 604 (2010). doi: https://doi.org/10.1021/bc900323v
- B. Nowack, Science, 330, 1054 (2010). doi: https://doi.org/10.1126/science.1198074
- N. Chen, Y. He, Y. Su, X. Li, Q. Huang, H. Wang, X. Zhang, R. Tai, and C. Fan, Biomaterials, 33, 1238 (2012). doi: https://doi.org/10.1016/j.biomaterials.2011.10.070
- P. Zrazhevskiy, M. Sena, and X. Gao, Chem. Soc. Rev., 39, 4326 (2010). doi: https://doi.org/10.1039/B915139G
- Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, ACS Nano, 6, 3695 (2012). doi: https://doi.org/10.1021/nn301218z
- H. Y. Yang, Y. W. Zhao, Z. Y. Zhang, H. M. Xiong, and S. N. Yu, Nanotechnology, 24, 055706 (2013). doi: https://doi.org/10.1088/0957-4484/24/5/055706
- M. Yarema, S. Pichler, M. Sytnyk, R. Seyrkammer, R. T. Lechner, G. Fritz-Popovski, D. Jarzab, K. Szendrei, R. Resel, O. Korovyanko, M. A. Loi, O. Paris, G. Hesser, and W. Heiss, ACS Nano, 5, 3758 (2011). doi: https://doi.org/10.1021/nn2001118