• Title/Summary/Keyword: Catalytic Effect

Search Result 828, Processing Time 0.029 seconds

Size Effect on the Modulus of Rupture in Automotive Ceramic Monolithic Substrate using Optimization and Response Surface Method (반응표면법과 최적화방법을 이용한 자동차 세라믹 모노리스 담체의 파단계수에 미치는 치수효과)

  • Baek, Seok-Heum;Shin, Soon-Gi;Joo, Won-Sik;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1392-1400
    • /
    • 2006
  • Since the monolithic ceramic substrate was in introduced for automotive catalytic converters, the durability of the substrate has been a continuing requirement to reduce the emission, gas of vehicle. The substrate can occupy a volume as small as 82 $cm^3$ and as large as 8200 $cm^3$ to provide the required substrate for catalytic activity. The long-term durability varies with the size of the substrate from manufacture's point of view. Therefore this study presents that the response surface model using central composite design can explain size effect on the modulus of rupture in a cordierite ceramic monolithic substrate.

Inhibition Effects of Toxic Solvent Mixture in Catalytic Oxidation Process (유독성 유기용매의 촉매산화공정에서 혼합조성에 따른 간섭효과)

  • 이승범;김원일;홍인권;김형진
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.72-79
    • /
    • 2001
  • The selective catalytic oxidation of toxic aromatic solvents (benzene, toluene, ethylbenzene, and styrene) and their mixtures were studied on a $Pt/{\;}{\gamma}-Al_2O_3$ catalyst at temperature ranging from $160~350^{\circ}C$. The deep conversion of aromatic solvents was increased as the inlet concentration was decreased and the reaction temperature was increased. The reactivity increases in order benzene > toluene > ethylbenzene > styrene. In mixture, remarkable effects on reaction rate and selectivity have been evidence ; the strongest inhibition effect is shown by styrene and increase in a reverse order with respect to that of reactivity. The inhibition effect was increased in order styrene > ethylbenzene > toluzene > benzene. This trend is due to the competition adsorption between the two or three reactants on the oxidized catalyst. Also, the deep conversion change of benzene was a small in tertiary mixtures(including of benzene and styrene) comparing with conversion characteristics of binary mixture with styrene. This result was due to small concentration of styrene. which had very strong inhibition effect.

  • PDF

Combustibility Improving Effect of Organometallic Salt for Fuel Oil (燃料油 燃燒에 미치는 有機金屬鹽의 助燃效果)

  • Yong Shik Kang
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.330-347
    • /
    • 1971
  • Catalytic effects of metallic salts on the combustion of diesel fuel oil have been studied. In the case of organometallic salt, the active species are the metallic oxides resulted from combustion of the salts. The oxides act only on the residual solid carbon produced from the fuel oil combustion. The catalytic activity can be explained with the semiconductor theory just as in the case of the gas phase reaction. The chemical rate constant of the combustion of carbon, the soot from diesel fuel oil, is found to be $k_c=1.1{\times}10^4\;exp$ (-16,600/T) below $800^{\circ}K$. By addition of metallic oxides, the rate constant increases remarkably. This work has substantiated the belief that the effect of the metallic salts on the fuel oil combustion can conveniently be studied by checking directly the effect of the corresponding metallic oxide on the soot carbon.

  • PDF

The Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of Alkali Metal Ethoxides with S-p-nitrophenyl 2-thiofuroate and 2-Thiophenethiocarboxylate in Absolute Ethanol

  • 엄익환;이윤정;남정현;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.749-754
    • /
    • 1997
  • Rate constants have been measured spectrophotometrically for the reactions of alkali metal ethoxides (EtOM) with S-p-nitrophenyl 2-thiofuroate (1b) and 2-thiophenethiocarboxylate (2b) in absolute ethanol at 25.0±0.1 ℃. 1b is observed to be more reactive than 2b toward all the EtOM studied. The reactivity of EtOM is in the order EtOK > EtONa > EtO- > EtOLi for both substrates, indicating that K+ and Na+ behave as a catalyst while Li+ acts as an inhibitor in the present system. Equilibrium association constants of alkali metal ions with the transition state (KaTS) have been calculated from the known equilibrium association constants of alkali metal ion with ethoxide ion (Ka) and the rate constants for the reactions of EtOM with 1b and 2b. The catalytic effect (KaTS/Ka) is larger for the reaction of 1b than 2b, and decreases with decreasing the size of the alkali metal ions. Formation of 5-membered chelation at the transition state appears to be responsible for the catalytic effect.

An Application of Optoacoustic Technique for the CO Oxidation Reaction Catalyzed by $Gd_{1-x}Sr_xCoO_{3-y}$ (광음향분광법을 이용한 CO 산화반응에서의 $Gd_{1-x}Sr_xCoO_{3-y}$ 촉매효과 연구)

  • Kang Hee-Seok;Oum Ka-Won;Hwang Jin-Soo;Yo Chul-Hyun;Choi Joong-Gill
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 1993
  • An application of the optoacoustic detection method to investigate the catalytic effect of a perovskite, $Gd_{1-x}Sr_xCoO_{3-y}$ (x = 0.00, 0.25, 0.50, 0.75) system, in the oxidation reaction of CO is described. The optoacoustic signals Of $CO_2$ produced from the oxidation reaction were measured for differing x values in $Gd_{1-x}Sr_xCoO_{3-y}$. By monitoring optoacoustic signals with respect to the time, the concentration ratios of CO and $O_2$, and the temperature, the kinetic information on the catalytic properties of the perovskite for CO oxidation reaction can be obtained. The effect of Sr substitution in $Gd_{1-x}Sr_xCoO_{3-y}$ has been found to show the maximum catalytic effect at x = 0.25 and the substantial increase in catalytic activity at temperatures above 200$^{\circ}C$. It demonstrates that the optoacoustic detection method allows the investigation of the integrated catalytic effect not only for the oxidation reaction of CO, but also for many reactions, in general, by continuously and directly detecting the species associated with the reactions.

  • PDF

The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length (탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향)

  • Hong, Soon-kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

Effect of Pressure on Catalytic Properties of Glutamate Racemase from Aquifex pyrophilus, an Extremophilic Bacteria

  • Lee, Ki-Seog;Chi, Young-Min;Yu, Yeon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.149-152
    • /
    • 2002
  • The effect of pressure on the catalytic properties of glutamate racemase from Aquifex pyrophilus, an extremophilic bacterium, was investigated. The activation volume for the overall reaction $({\Delta}V^{\neq})$ and catalysis $({{Delta}V_{cat}}^{\neq})$ was -96.97 ml/mol and 4.97 ml/mol, respectively, while the reaction volume for the substrate binding (${\Delta}V_{K_m^-1}$) was -101.94 ml/mol. The large negative ${\Delta}V^{\neq}$ for the overall reaction indicated that the pressurization of glutamate racemase resulted in enhanced catalytic efficiencies. In addition, this value was also due to the large negative ${Delta}V_{K_m^-1}$ for the substrate binding. The negative value of ${Delta}V_{K_m^-1}$ implied that the conformational changes in the enzyme molecule occurred during the substrate binding process, thereby increasing the degree of hydration. The small value of ${{Delta}V_{cat}}^{\neq}$suggested that the pressure did not affect the glutamate racemase catalysis after the substrate binding.

Lithium Chloride-Imidazolium Chloride Melts for the Coupling Reactions of Propylene Oxide and CO2

  • Nguyen, Ly Vinh;Lee, Bo-Ra;Nguyen, Dinh Quan;Kang, Min-Jung;Lee, Hyun-Joo;Ryu, Seol-Ryu;Kim, Hoon-Sik;Lee, Je-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.148-152
    • /
    • 2008
  • A series of lithium chloride-imidazolium chloride (LiCl-[imidazolium]Cl) melts were prepared and their catalytic activities were evaluated for the coupling reactions of propylene oxide and CO2. At the constant mole of LiCl, the catalytic activities of LiCl-[imidazolium]Cl melts increased with increasing molar ratio of [imidazolium]Cl/LiCl up to 2, but thereafter decreased rapidly. The variation of alkyl groups on the imidazolium ring showed a negligible effect on the catalytic activity, but the number of alkyl groups present on the imidazolium cation exerts a pronounced effect. Catalysis and electrospray ionization tandem mass spectral analysis results of LiCl-[imidazolium]Cl melts imply that the activity of the melt is strongly related to the amount of LiCl2- generated from the melt.

The effect of heat treatment on catalytic crystallization in Li$_2$O-Al$_2$O$_3$-SiO$_2$ glass system (LI$_2$O-Al$_2$O$_3$-SiO$_2$계 유리의 catalytic crystallization에 미치는 열처리 효과)

  • 박원규;이채현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.275-285
    • /
    • 1996
  • The effect of heat-treatment on catalytic crystallization in $LI_2O-Al_2O_3-SiO_2$ glass system over its glass transition temperature was investigated. Glass composition $4Li_2O{cdot}22AL_2O_3{cdot}66SiO_2{cdot}2TiO_2{cdot}2.5ZrO_2{cdot}1.5P_2O_5{cdot}1.0Na_2O{cdot}1.0As_2O_3$ (wt%) was selected and heat-treated at different heating conditions to obtain transparent glass-ceramic. Nucleation and crystallization behaviour of this composition were estimated by differential thermal analysis (DTA) and X-ray diffractometer (XRD) and its thermal expansion coefficients were measured by Dilatometer. As a result, glass transition temperature was $730^{\circ}C$ and two maximum nucleation temperatures were estimated at $730^{\circ}C$ and 82$0^{\circ}C$ using JMA(Johson-Mehl-Avrami) equation by DTA. $ZrTiO_4$ $\beta$-Quartz solid solution and $\beta$-Spodumene crystals were identified by XRD. The optimum crystallization temperature was 92$0^{\circ}C$ and three step heating schedule was expected to be useful to obtain transparent glass-ceramic.

  • PDF