Abstract
The selective catalytic oxidation of toxic aromatic solvents (benzene, toluene, ethylbenzene, and styrene) and their mixtures were studied on a $Pt/{\;}{\gamma}-Al_2O_3$ catalyst at temperature ranging from $160~350^{\circ}C$. The deep conversion of aromatic solvents was increased as the inlet concentration was decreased and the reaction temperature was increased. The reactivity increases in order benzene > toluene > ethylbenzene > styrene. In mixture, remarkable effects on reaction rate and selectivity have been evidence ; the strongest inhibition effect is shown by styrene and increase in a reverse order with respect to that of reactivity. The inhibition effect was increased in order styrene > ethylbenzene > toluzene > benzene. This trend is due to the competition adsorption between the two or three reactants on the oxidized catalyst. Also, the deep conversion change of benzene was a small in tertiary mixtures(including of benzene and styrene) comparing with conversion characteristics of binary mixture with styrene. This result was due to small concentration of styrene. which had very strong inhibition effect.