DOI QR코드

DOI QR Code

Lithium Chloride-Imidazolium Chloride Melts for the Coupling Reactions of Propylene Oxide and CO2

  • Nguyen, Ly Vinh (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Lee, Bo-Ra (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Nguyen, Dinh Quan (Environment and Process Division, Korea Institute of Science and Technology) ;
  • Kang, Min-Jung (Bioanalysis & Biotransformation Center, Korea Institute of Science and Technology) ;
  • Lee, Hyun-Joo (Environment and Process Division, Korea Institute of Science and Technology) ;
  • Ryu, Seol-Ryu (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Kim, Hoon-Sik (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Lee, Je-Seung (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University)
  • Published : 2008.01.20

Abstract

A series of lithium chloride-imidazolium chloride (LiCl-[imidazolium]Cl) melts were prepared and their catalytic activities were evaluated for the coupling reactions of propylene oxide and CO2. At the constant mole of LiCl, the catalytic activities of LiCl-[imidazolium]Cl melts increased with increasing molar ratio of [imidazolium]Cl/LiCl up to 2, but thereafter decreased rapidly. The variation of alkyl groups on the imidazolium ring showed a negligible effect on the catalytic activity, but the number of alkyl groups present on the imidazolium cation exerts a pronounced effect. Catalysis and electrospray ionization tandem mass spectral analysis results of LiCl-[imidazolium]Cl melts imply that the activity of the melt is strongly related to the amount of LiCl2- generated from the melt.

Keywords

References

  1. Shaikh, A. G. Chem. Rev. 1996, 96, 951 https://doi.org/10.1021/cr950067i
  2. Lee, D.; Hur, J.; Kim, B.; Park, S.; Park, D. J. Ind. Eng. Chem. 2003, 9, 513 https://doi.org/10.1021/ie50089a023
  3. Clements, J. H. Ind. Eng. Chem. Res. 2003, 42, 663 https://doi.org/10.1021/ie020678i
  4. Inaba, M.; Siroma, Z.; Funabiki, A.; Asano, M. Langmuir 1996, 12, 1535 https://doi.org/10.1021/la950848e
  5. Nomura, R.; Niangawa, A.; Matsuda, H. J. Org. Chem. 1980, 45, 3735 https://doi.org/10.1021/jo01307a002
  6. Ratzenhofer, M.; Kisch, H. Angew. Chem. Int. Ed. 1980, 19, 317 https://doi.org/10.1002/anie.198003171
  7. Kisch, H.; Millini, R.; Wang, I. J. Chem. Ber. 1986, 119, 1090 https://doi.org/10.1002/cber.19861190329
  8. Dumler, W.; Kisch, H. Chem. Ber. 1990, 123, 277 https://doi.org/10.1002/cber.19901230209
  9. Bok, T.; Noh, E. K.; Lee, B. Y. Bull. Korean Chem. Soc. 2006, 27, 1171 https://doi.org/10.5012/bkcs.2006.27.8.1171
  10. Jing, H.; Nguyen, S. T. J. Mol. Catal. A: Chem. 2007, 261, 12 https://doi.org/10.1016/j.molcata.2006.07.057
  11. Kim, H. S.; Bae, J. Y.; Lee, J. S.; Kwon, O.-S.; Palgunadi, J.; Lee, S. D.; Lee, S.-H. J. Catal. 2005, 232, 80 https://doi.org/10.1016/j.jcat.2005.01.033
  12. Sun, J.; Wang, L.; Zhang, S.; Li, Z.; Zhang, X.; Dai, W.; Mori, R. J. Mol. Catal. A: Chem. 2006, 256, 295 https://doi.org/10.1016/j.molcata.2006.05.004
  13. Ono, F.; Qiao, K.; Tomida, D.; Yokoyama, C. J. Mol. Catal. A: Chem. 2007, 263, 223 https://doi.org/10.1016/j.molcata.2006.08.037
  14. Wasserscheid, P. J. Ind. Eng. Chem. 2007, 13, 325
  15. Jarapur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345 https://doi.org/10.5012/bkcs.2006.27.3.345
  16. Kim, H. S.; Kim, J. J.; Kim, H.; Jang, H. G. J. Catal. 2003, 220, 44 https://doi.org/10.1016/S0021-9517(03)00238-0
  17. Palgunadi, J.; Kwon, O.-S.; Lee, H.; Bae, J. Y.; Ahn, B. S.; Min, N.-Y.; Kim, H. S. Catal. Today 2004, 98, 511 https://doi.org/10.1016/j.cattod.2004.09.005
  18. Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 5th Ed.; Elsevier: 2003
  19. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem. 1982, 21, 1263 https://doi.org/10.1021/ic00133a078
  20. Dyson, P. J.; Grossel, M. C.; Srinivasan, N.; Vine, T.; Welon, T.; Williams, D. J.; White, A. J. P.; Zigras, T. J. Chem. Soc., Dalton Trans. 1997, 3465
  21. Hasan, M.; Kozhevnikov, I. V.; Siddiqui, M. R. H.; Steiner, A.; Winterton, N. Inorg. Chem. 1999, 38, 5637 https://doi.org/10.1021/ic990657p
  22. Jones, W. O. J. Chem. Soc. 1954, 1808 https://doi.org/10.1039/jr9540001808
  23. Tait, S.; Osteryoung, R. A. Inorg. Chem. 1984, 23, 4352 https://doi.org/10.1021/ic00193a049
  24. Dieter, K. M.; Dymek, Jr., C. J.; Heimer, N. E.; Rovang, J. W.; Wilkes, J. S. J. Am. Chem. Soc. 1988, 110, 2722 https://doi.org/10.1021/ja00217a004
  25. Campbell, J. L. E.; Johnson, K. E.; Torkelson, J. R. Inorg. Chem. 1994, 33, 3340 https://doi.org/10.1021/ic00093a023
  26. Hussey, C. L. Pure & Appl. Chem. 1988, 60, 1763 https://doi.org/10.1351/pac198860121763

Cited by

  1. Imidazolium Chloride-LiCl Melts as Efficient Solvents for Cellulose vol.34, pp.12, 2013, https://doi.org/10.5012/bkcs.2013.34.12.3771
  2. vol.38, pp.2, 2017, https://doi.org/10.1002/bkcs.11068
  3. Efficient Cycloaddition Reaction of Carbon Dioxide with Epoxide by Rhodamine Based Catalyst Under 1 atm Pressure vol.33, pp.6, 2008, https://doi.org/10.5012/bkcs.2012.33.6.1945