• Title/Summary/Keyword: Catalyst filter

Search Result 101, Processing Time 0.031 seconds

Preparation and Properties of Disc Type CuO Catalyst Impregnated Ceramic Filters (디스크형 산화구리 촉매담지 세라믹필터의 제조와 물성)

  • Hong Min-Sun;Moon Su-Ho;Lee Jae-Chun;Lee Dong-Sub;Lim Woo Taik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • A catalyst with CuO ceramic filter for simultaneous treatment of dust and HAP was prepared and characterized. Catalytic ceramic filter can not only potentially achieve the substantial savings in energy but provide with effective optimization and integration of process for simultaneous removal of SO$_2$, NO$_{x}$ and particulates from flue gases. Catalytic ceramic filters remove simultaneously particulates on exterior surface of filters and reduce NO to $N_2$ and $H_2O$ by SCR (Selective Catalytic Reduction) process. Preparation of catalyst impregnated ceramic filter with disk shape (Ψ 50) follow the processing of alumino-silicate ceramic filter, support impregnation and catalyst impregnation (copper oxide). Preparation routes of alumino-silicate catalyst carrier suitable for production of catalytic filters practically were studied and developed using the sol-gel and colloidal processing, homogeneous precipitation and impregnation method. Characterization of the catalyst, catalyst carrier catalytic filter materials have been performed the using various techniques such as BET, XRD, TGA, SEM. Combination of the sol-gel and colloidal processing and impregnation method is recommended to prepare catalyst carriers economically for catalytic filter applications.s.

NO Reduction Performance of V2O5-WO3/TiO2 Catalyst Supported on a Ceramic Sheet Filter (세라믹 시트 필터에 부착된 V2O5-WO3/TiO2 촉매의 NO 환원 성능)

  • Choi, Joo Hong
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Catalytic filter has many advantages for the industrial application owing to its bi-functional ability to treat nitrogen oxides and particulate simultaneously. The technical feasibility of using the catalytic filter in the flue gas treatment process will be more promoted if the high porous ceramic sheet filter is utilized. However, it is not easy to prepare the effective catalytic filter using sheet filter as it has less room for catalyst support due to its thin layer. In this study, catalytic filter using a domestic ceramic sheet filter element has been prepared and conducted the experimental evaluation for NO reduction performance. The current sheet filter element shows the low catalytic activity less than 92% conversion for NO concentration 700 ppm at the face velocity $0.02m\;s^{-1}$. This unexpected low catalytic activity seems to be caused by the present of extraordinary large pores from the lack of uniformity in the pore size distribution of the sheet filter. The large pore size of the sheet filter is reduced by composing the smaller powder as its raw material, which presents improvement in NO conversion more than 96%. More improvement is observed showing 98% NO conversion which is applicable to a commercial plant when the catalyst coating layer is expanded by adding the large $TiO_2$ particles during the catalyst preparation. Both of above two methods is regarded as that the broad gates of the larger pores in the coating layer are effectively filled with the proper catalyst. So these results encourage the utilization of sheet filter as a good catalytic filter material with its potential merit of high permeability.

The removal characteristics of PCB by catalyzed fabric filter (촉매 처리된 여과재에 의한 PCB 처리특성)

  • Kim, Moon-Chan
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.167-173
    • /
    • 2008
  • In order to solve the reproduction problem of PCB, we carried out poly chlorinated biphenyl (PCB) removal at low temperature (< $220^{\circ}C$), which could not take place reproduction of PCB by over 90% on catalyst. We coated catalyst to commercial bag filter for simultaneous removal of PCB and particle. It was found that PCB could be not reproducible due to it's decomposition of benzene ring. The coating method of spray type was more useful than that of precipitation one. PCB removal conversion was highest on the Pt-Co catalyzed bag filter. The data of this study can be well used in order to remove PCB and particle simultaneously for incinerator process by substituting commercial bag filter to catalyzed bag filter.

Removal Technology of NOx Using V2O5/TiO2 Catalyst Impregnated Ceramic Candle Filters (바나디아 촉매담지 세라믹 캔들필터를 이용한 질소산화물 제거기술)

  • Lee, Dong-Sub;Park, Jin-Sick
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1077-1083
    • /
    • 2007
  • [ $V_2O_5/TiO_2$ ] catalyst impregnated ceramic candle filters are in principle, capable of performing shallow-bed dust filtration plus a catalytic reaction, promoted by a catalytic deposited in their inner structure. Pilot-scale $V_2O_5/TiO_2$ catalyst impregnated ceramic candle filters were prepared, characterized and tested for their activity towards the SCR reaction. The effect on NO conversion of operating temperature, gas hourly space velocity, amount of deposited catalyst, pressure drops and long-term experiment (life of catalytic filter) was determined. The following effects of $V_2O_5/TiO_2$ catalyst impregnated ceramic candle filters in SCR reaction are observed: (1) It increases the activity and widens the temperature window for SCR. (2) When the content of $V_2O_5$ catalyst increases further from 3 to 9wt.%, activity of NO increases. (3) NO conversion at first increases with temperature and then decreases at high temperatures (above $400^{\circ} over), possibly due to the occurrence of the ammonia oxidation reaction.

Combined Application of Burner and Oxidation Catalyst for Diesel Particulate Filter Regeneration (DPF 재생을 위한 버너-산화촉매 복합 적용)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.25-31
    • /
    • 2010
  • Combined technique of burner and DOC has been used for regeneration of Diesel Particulate Filter. Experiments has been performed to increase the temperature of engine exhaust gas to burn the collected soot in DPF at all conditions of operation of 3 liter diesel engine. Ignition temperature of soot can be successfully obtained by heats of burner flame and residual fuel oxidation at diesel oxidation catalyst even in the condition of oxygen deficiency. It is found that the load of air compressor and heat loss can be reduced to the level of practical application. It is also found that CO and THC emissions are not increase by additional combustion of regeneration burner.

A Study on the Ozone Reduction of Plasma Devices by Catalyst Method (촉매법을 적용한 오존 저감형 플라즈마 기기)

  • Jeon, Sin Young;Kim, Dong Jun;Kim, Jong Yeop;Gwon, Jin Gu;Jeon, Young Min;Do, Gye Ryung;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, we created a DBD plasma device and a MnO2 catalyst mesh filter for evaluating ozone reduction of devices via the catalyst method. The DBD plasma device was manufactured by applying Ag paste to soda lime glass via the screen-printing method. The MnO2 catalyst mesh filter was manufactured by mixing MnO2 powder with binder with a 10% difference in concentration from 10% to 50% and then applying it using the dip-coating method. Finally, we sintered a MnO2 catalyst mesh filter in an electric furnace. We evaluated the characteristics of ozone generation according to the Ar gas flow of DBD plasma devices, the opening ratio, and ozone reduction performance of the MnO2 catalyst filters. Ozone reduction performance was approximately 20.4% at MnO2 10 wt%, 37.8% at MnO2 30 wt% and 50% at MnO2 50 wt%.

NO REDUCTION PROPERTY OF Pt-V2O5-WO3/TiO2 CATALYST SUPPORTED ON PRD-66 CERAMIC FILTER

  • Kim, Young-Ae;Choi, Joo-Hong;Bak, Young-Cheol
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.239-246
    • /
    • 2005
  • The effect of Pt addition over $V_2O_5-WO_3/TiO_2$ catalyst supported on PRO-66 was investigated for NO reduction in order to develop the catalytic filter working at low temperature. Catalytic filters, $Pt-V_2O_5-WO_3/TiO_2/PRD$, were prepared by co-impregnation of Pt, V, and W precursors on $TiO_2$-coated ceramic filter named PRD (PRD-66). Titania was coated onto the pore surface of the ceramic filter using a vacuum aided-dip coating method. The Pt-loaded catalytic filter shifted the optimum working temperature from $260-320^{\circ}C$(for the catalytic filter without Pt addition) to $190-240^{\circ}C$, reducing 700 ppm NO to achieve the $N_x$ slip concentration($N_x\;=\;NO+N_2O+NO_2+NH_3$) less than 20 ppm at the face velocity of 2 cm/s. $Pt-V_2O_5-WO_3/TiO_2$ supported on PRD showed the similar catalytic activity for NO reduction with that supported on SiC filter as reported in a previous study, which implies the ceramic filter itself has no considerable interaction for the catalytic activity.

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

Removal of NO Using CuO/3Al2O3 · 2SiO2 Catalyst Impregnated Ceramic Candle Filters (산화구리 촉매담지 세라믹 캔들필터를 이용한 NO 제거)

  • 홍민선;문수호;이재춘;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.291-302
    • /
    • 2004
  • The CuO/$3AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters for nitrogen oxides removal were prepared by porous mullite($3AL_2O_3{\cdot}2SiO_2$) support and CuO catalyst deposited on this support to achieve uniformly dispersed CuO deposition, which are impregnated into the pores of available alumino-silicate ceramic candle filter. The CuO/3$AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters were characterized by XRD, BET, air permeability, pore size, SEM and catalytic tests in the reduction of NOx by NH$_3$. The observed effects of CuO/3$AL_2O_3{\cdot}2SiO_2$ impregnated ceramic candle filters in SCR reaction are as follows : (1) when the content of CuO catalyst increased further, activity of NO increased. (2) NO conversion at first increased with temperature and then decreased at high temperatures (above 40$0^{\circ}C$), possibly due to the occurrence of the ammonia oxidation reaction. (3) In pilot plant test for 3 months, NO conversion was greater than 90%.

Study of Catalytic Ceramic Fiber Filter Elements for Hot Gas Filtration

  • Young Jin Choi;Min Jin Park;Jun Suk Hong;Min Sun Hong;Jae Chun Lee
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.284-287
    • /
    • 1999
  • CuO catalyst-coated alumino-silicate fiber filters were prepared for the simultaneous removal of particulate matter and gaseous contaminants such as NOx and SOx. Hot gas cleaning experiments similar to Shell UOP process other than the catalyst supporting materials were carried out between 300 and $500^{\circ}C$ for the evaluation of the gas removal efficiency of the catalytic filter. Experimental results showed that removel efficiency for $SO_2$ was greater than 99% in the temperature range 450~$500^{\circ}C$ and more than 90% of NO was collected between 350 and $370^{\circ}C$. It was found that the higher the CuO content, the higher the removal efficiency for $SO_2$. Removal efficiency for NO was more affected by the gas cleaning temperature than by the CuO content in the catalyst-filter.

  • PDF