DOI QR코드

DOI QR Code

A Study on the Ozone Reduction of Plasma Devices by Catalyst Method

촉매법을 적용한 오존 저감형 플라즈마 기기

  • Jeon, Sin Young (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Kim, Dong Jun (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Kim, Jong Yeop (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Gwon, Jin Gu (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Jeon, Young Min (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Do, Gye Ryung (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Lee, Seong Eui (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • 전신영 (한국산업기술대학교 신소재공학과) ;
  • 김동준 (한국산업기술대학교 신소재공학과) ;
  • 김종엽 (한국산업기술대학교 신소재공학과) ;
  • 권진구 (한국산업기술대학교 신소재공학과) ;
  • 전용민 (한국산업기술대학교 신소재공학과) ;
  • 도계령 (한국산업기술대학교 신소재공학과) ;
  • 이성의 (한국산업기술대학교 신소재공학과)
  • Received : 2020.10.16
  • Accepted : 2020.10.29
  • Published : 2021.01.01

Abstract

In this study, we created a DBD plasma device and a MnO2 catalyst mesh filter for evaluating ozone reduction of devices via the catalyst method. The DBD plasma device was manufactured by applying Ag paste to soda lime glass via the screen-printing method. The MnO2 catalyst mesh filter was manufactured by mixing MnO2 powder with binder with a 10% difference in concentration from 10% to 50% and then applying it using the dip-coating method. Finally, we sintered a MnO2 catalyst mesh filter in an electric furnace. We evaluated the characteristics of ozone generation according to the Ar gas flow of DBD plasma devices, the opening ratio, and ozone reduction performance of the MnO2 catalyst filters. Ozone reduction performance was approximately 20.4% at MnO2 10 wt%, 37.8% at MnO2 30 wt% and 50% at MnO2 50 wt%.

Keywords

References

  1. W. J. Choi, E. H. Choi, H. S. Sung, J. G. Kwon, and S. E. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 320 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.4.320]
  2. I. H. Won, S. K. Kang, J. Y. Sim, and J. K. Lee, IEEE Trans. Plasma Sci., 42, 2788 (2014). [DOI: https://doi.org/10.1109/tps.2014.2320266]
  3. K. H. Song, Y. S. Ko, and W. C. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 9, 1427 (2014). [DOI: https://doi.org/10.13067/jkiecs.2014.9.12.1427]
  4. H. H. Son, Appl. Chem. Eng., 22, 261 (2011).
  5. W. Y. Lee, D. J. Jin, Y. J. Kim, G. H. Han, H. K. Yu, H. C. Kim, S. W. Jin, J. H. Koo, D. Y. Kim, and G. Cho, J. Korean Vac. Soc., 22, 111 (2013). [DOI: https://doi.org/10.5757/JKVS.2013.22.3.111]
  6. J. H. Byeon, J. H. Hwang, J. H. Ji, and S. H. Kang, Trans. Korean Soc. Mech. Eng., B27, 524 (2003). [DOI: https://doi.org/10.3795/KSME-B.2003.27.4.524]
  7. B. K. Koo, Y. C. Kim, M. G. Jang, J. H. Kim, J. Y. Park, and S. B. Han, J. Korean Inst. Illum. Electr. Install. Eng., 25, 116 (2011). [DOI: https://doi.org/10.5207/JIEIE.2011.25.10.116]
  8. J. M. Tatibouët, S. Valange, and H. Touati, Appl. Catal., A, 569, 126 (2019). [DOI: https://doi.org/10.1016/j.apcata.2018.10.026]
  9. I. Jang and Y. Shin, The Korean Society of Mechanical Engineers (2013) p. 403.
  10. S. B. Han, J. Y. Park, and S. H. Park, J. Korean Inst. Illum. Electr. Install. Eng., 22, 142 (2008). [DOI: https://doi.org/10.5207/JIEIE.2008.22.12.142]
  11. S. B. Han, Trans. Korean Inst. Elect. Eng., 59, 932 (2010). [DOI: https://doi.org/10.5370/KIEE.2010.59.5.932]
  12. M. Yamaguma and J. W. Choi, J. Korean Soc. Saf., 15, 92 (2000).
  13. M. Seo, M. Lee, S. Lee, S. Cho, and S. Uhm, Appl. Chem. Eng., 28, 193 (2017). [DOI: https://doi.org/10.14478/ace.2016.1130]