• Title/Summary/Keyword: Catalyst Bed

Search Result 275, Processing Time 0.022 seconds

Preparation of Carbon Nanotubes and Carbon Nanowires from Methane Pyrolysis over Pd/SPK Catalyst (Pd/SPK 촉매상에서 메탄의 열분해 반응으로부터 탄소 나노튜브 및 탄소 나노선의 제조)

  • Seo, Ho Joon;Kwon, Oh Yun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.94-97
    • /
    • 2007
  • Carbon nanotubes and nanowires were prepared by methane pyrolysis over Pd(5)/SPK catalyst by changing oxygen molar ratio in a fixed bed flow reactor under atmospheric condition and also analyzed by SEM and TEM. When the $CH_4/O_2$ molar ratio was 1, carbons were not almost deposited on the catalyst bed support, but when it was 2, carbons were deposited as much as plugging reactor. TEM and SEM images for the deposited carbons showed a number of single-walled carbon nanotubes and carbon nanowires. The growth mechanism of carbon nanotubes produced on the catalyst surface was the tip growth mode. It should be played an important role in carbon nanotubes and nanowires produced on the catalyst bed support to formate the carbon growth velocity vectors and nuclei of ring structure of carbon nanowires. SPK carrier was $N_2$ isotherm of IV type with mesopores, and excellent in the thermal stability.

Production of Hydrogen Gas by Thermochemical Transition of Lauan in Fixed Bed Gasification (고정층 가스화에 의한 나왕톱밥으로부터 수소제조특성)

  • Jung, Hye-Jin;Kim, Chul Ho;Son, Jae-Ek;Kim, Lae-Hyun;Shin, Hun Yong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.209-213
    • /
    • 2008
  • The fixed bed gasification reactor with 1 m hight and 10.2 cm diameter was utilized for the hydrogen production from biomass wastes. Lauan sawdust was used for non-catalytic and catalytic gasification reaction as a sample in the fixed bed reactor. The fixed bed temperature and catalyst are the major variables affecting the process operation. Thus, the effect of fixed bed temperature and the catalysts on gas composition were studied at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. The yield of hydrogen was increased at higher temperature in the fixed bed reaction. Fractions of hydrogen, carbon monoxide and methane gas in the product gas increased when sodium carbonate ($Na_2CO_3$) and potassium carbonate ($K_2CO_3$) catalysts were used. Furthermore, sodium carbonate catalyst was more effective to obtain higher hydrogen yield compared to potassium carbonate catalyst.

An Approach to the Optimization of Catalyst-bed L/D Configuration in 70 N-class Hydrazine Thruster (70 N급 하이드라진 추력기의 촉매대 형상(L/D) 최적화 연구)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.30-37
    • /
    • 2013
  • A ground hot-firing test was conducted to take out the optimal design configurations for the catalyst bed of liquid-monopropellant hydrazine thruster which could be used for primary engine or attitude control thruster of space vehicles. Performance characteristics with the variation of thrust-chamber length are investigated in terms of thrust, specific impulse, chamber pressure, characteristic velocity, and hydrazine decomposition rate. Additionally, the correlations between propellant-supply pressure and performance parameters are given. As results, increase of catalyst-bed length leads to performance degradation in this test condition, and also decreases propellant consumption efficiency with the supply pressure variation.

Effects of Catalyst Granule Failure in Monopropellant Satellite Thruster (단일추진제 위성추력기에서 촉매 파손에 의한 영향)

  • Hwang, Chang-Hwan;Lee, Sung-Nam;Baek, Seung-Wook;Kim, Su-Kyum;Yu, Myoung-Jong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.7-14
    • /
    • 2011
  • Various sizes of hydrazine monopropellant thruster have been used on satellite and space launcher vehicle. The test and handling procedure of hydrazine monopropellant thruster are usually difficult because of the toxicity of hydrazine and its decomposition product gases. Therefore, the numerical analysis can help understand the effects of various design parameters and can reduce the time as well as expenses. In this study, the numerical analysis is performed by modelling the catalyst bed as one dimensional porous medium. Thereby, resulting physical phenomena are examined by considering the variation of catalyst bed characteristics incurred by catalyst granule failure.

Performance Evaluation of a Micro Thruster Utilizing Hydrogen Peroxide Decomposition (과산화수소 분해반응을 이용한 초소형 추력기 성능평가)

  • Lee, Jeong-Sub;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.102-105
    • /
    • 2007
  • The performance evaluation of the micro thruster utilizing hydrogen peroxide decomposition is described. The catalyst bed was made of porous ceramic material($Isolite^{(R)}$) with large surface to mass ratio. 14%wt platinum was loaded on the catalyst support as a catalyst. Hydrogen peroxide with 85% concentration was used as a monopropellant. The length of the catalyst bed and the feed pressure of the hydrogen peroxide were taken as the parameters for the experiment. All experiments were carried out under cold start condition for 30 seconds. The $c^*$ efficiency was evaluated for each test case using measured pressure data. For the catalyst support length of 30 mm and feed pressure at 5.51 bar, satisfactory $c^*$ efficiency beyond 95% was observed.

  • PDF

Packed Bed Reactor Simulation for the Water Gas Shift Reaction in the Steam Reforming of Natural Gas (천연가스의 수증기 개질에서 수성가스 전환용 충진층 반응기의 전산모사)

  • LEE, DEUKKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.494-502
    • /
    • 2016
  • A 1-dimensional heterogeneous reactor model with the gas-solid interfacial phase gradients was developed for the simulation of the packed bed reactor where the exothermic reversible water gas shift reaction for the natural gas steam reformed gas was proceeding in adiabatic mode. Experimental results obtained over the WGS catalyst, C18-HA, were best simulated when the frequency factor of the reaction rate constant was adjusted to a half the value reported over another WGS catalyst, EX-2248, having the same kinds of active components as the C18-HA. For the reactor of the inside diameter 158.4 mm and the bed length 650 mm, the optimum feeding temperature of the reformed gas was simulated to be $194^{\circ}C$, giving the lowest CO content in the product gas by 1.68 mol% on the basis of dried gas. For reactors more extended in the bed length, the possible lowest CO content in the product gas with the optimum feeding temperature of the reformed gas were suggested.

Numerical Study on High Temperature CO-Shift Reactor in IGFC (고온수소 전환 반응기에 관한 수치해석적 연구)

  • SEO, DONG-KYUN;LEE, JIN-HYANG;CHI, JUN-HWA;HONG, JIN-PYO;OH, SUK-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.324-330
    • /
    • 2018
  • In this study a numerical study was conducted to show flow, temperature and gas distributions in a high temperature CO shift reactor which was designed specially for energy saving and then evaluated with the related experiment. Mole fractions of syngas at the end of the catalyst bed were predicted with various assumed pre-exponential factors, were compared with the corresponding experimental results and $10^8$ was finally selected as the value. With the selection, a base case was examined. It was calculated that the inlet duct attached asymmetrically to the CO shift reactor affects on the distribution of the upward momentum (+z directional). In addition, CO conversion ratio is achieved up to 90% in the catalyst bed and especially it reached up to 70% at the initial part of catalyst bed.

Characteristics of Catalytically Supported Combustion for Gas Turbine Catalytic Combustor;Effects of the inlet shape of catalytic burner (가스터빈용 촉매 연소기를 위한 촉매-화염 복합 연소 특성연구;촉매버너 입구 형상의 영향)

  • Lee, Kyung-Won;Chung, Nam-Jo;Ryu, In-Soo;Cho, Sung-June;Seo, Yong-Seog;Kang, Sung-Kyu;Song, Kwang-Sup;Chun, Kwang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.71-79
    • /
    • 2002
  • The characteristics of the catalytically supported combustion with Pd and Pd/Pt based catalyst using the bench-scaled high pressure combustor have been investigated up to 5atm. This study aimed to investigate combustion characteristics of the stable flame attached to the exit of catalyst bed and NOx emissions with respect to the position of axial and radial direction in the combustor. NOx emissions were increased along the axial distance after the catalyst bed exit and radially decreased from the center to the wall of the combustor. At the higher pressure, the NOx emission decreased slightly due to the lower flame temperature in the combustor at the high pressure.

  • PDF

Enhanced performance at an early state of hydrocarbon selective catalyst reduction of NOx by atmospheric pressure plasma

  • Nguyen, Duc Ba;Heo, Il Jeong;Mok, Young Sun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.372-379
    • /
    • 2018
  • The improvement of $NO_x$ reduction by $Ag/{\gamma}-Al_2O_3$ with a hydrocarbon ($n-C_7H_6$) in the early state was investigated in a packed-bed dielectric barrier discharge plasma reactor. The results revealed that the combination of plasma with the catalyst enhanced $NO_x$ reduction efficiency at low operating temperatures, depending on the temperature and specific input energy. To sum up, the poor performance of the catalytic $NO_x$ reduction at low temperatures in the early stage before reaching thermochemical steady state can be greatly compensated for by using the atmospheric-pressure plasma generated in the catalyst bed.

ANALYSIS OF THE FIXED BED REACTOR FOR DME SYNTHESIS

  • Song, Dae-Sung;Ahn, Sung-Joon;Cho, Won-Jun;Park, Dal-Keun;Yoon, En-Sup
    • 한국가스학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.27-32
    • /
    • 2007
  • Dimethyl Ether (DME, $CH_3OCH_3$) is the simplest ether and is considered as one of the leading candidates in the quest for a substitute fur petroleum-based fuels. In this work, we analyzed the one-step synthesis of DME in a shell and tube type fixed bed reactor and carried out a simulation with a one-dimensional, steady state model of a heterogeneous catalyst bed, while taking into consideration the heat and mass transfer between the catalyst pellets and reactants gas and the effectiveness factor of the catalysts, together with the reactor cooling through the reactor tube wall. The reactor simulation was carried out under steady state condition and we compared the simulation results with the experimental data obtained from operations of a pilot-scale reactor and found good agreement between them.

  • PDF