DOI QR코드

DOI QR Code

Enhanced performance at an early state of hydrocarbon selective catalyst reduction of NOx by atmospheric pressure plasma

  • Nguyen, Duc Ba (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Heo, Il Jeong (Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • Received : 2018.06.13
  • Accepted : 2018.08.21
  • Published : 2018.12.25

Abstract

The improvement of $NO_x$ reduction by $Ag/{\gamma}-Al_2O_3$ with a hydrocarbon ($n-C_7H_6$) in the early state was investigated in a packed-bed dielectric barrier discharge plasma reactor. The results revealed that the combination of plasma with the catalyst enhanced $NO_x$ reduction efficiency at low operating temperatures, depending on the temperature and specific input energy. To sum up, the poor performance of the catalytic $NO_x$ reduction at low temperatures in the early stage before reaching thermochemical steady state can be greatly compensated for by using the atmospheric-pressure plasma generated in the catalyst bed.

Keywords

Acknowledgement

Supported by : National Research Foundation

References

  1. M.Z. Jacobson, Air Pollution and Global Warming: History, Science, and Solutions, Cambridge University Press, 2012.
  2. S. Jafarmadar, in: S. Bari (Ed.), The Effect of Split Injection on the Combustion and Emissions in DI and IDI Diesel Engines, InTech, Rijeka, 2013.
  3. B. Pereda-Ayo, J.R. Gonzalez-Velasco, in: S. Bari (Ed.), $NO_x$ Storage and Reduction for Diesel Engine Exhaust after Treatment, InTech, Rijeka, 2013.
  4. F. Gao, X. Tang, H. Yi, S. Zhao, C. Li, J. Li, Y. Shi, X. Meng, Catalysts 7 (2017).
  5. J. Wang, H. Zhao, G. Haller, Y. Li, Appl. Catal. B: Environ. 202 (2017) 346. https://doi.org/10.1016/j.apcatb.2016.09.024
  6. J. Tan, Y. Wei, Y. Sun, J. Liu, Z. Zhao, W. Song, J. Li, X. Zhang, J. Ind. Eng. Chem. 63 (2018) 84. https://doi.org/10.1016/j.jiec.2018.02.002
  7. X.-l. Long, B.-b. Duan, H.-x. Cao, M.-l. Jia, L.-a. Wu, J. Ind. Eng. Chem. 62 (2018) 217. https://doi.org/10.1016/j.jiec.2017.12.060
  8. Q. Zhang, J. Zhang, Z. Song, P. Ning, H. Li, X. Liu, J. Ind. Eng. Chem. 34 (2016) 165. https://doi.org/10.1016/j.jiec.2015.11.006
  9. Y. Liang, M. Zhao, J. Wang, M. Sun, S. Li, Y. Huang, L. Zhong, M. Gong, Y. Chen, J. Ind. Eng. Chem. 54 (2017) 359. https://doi.org/10.1016/j.jiec.2017.06.016
  10. M.A. Goula, N.D. Charisiou, K.N. Papageridis, A. Delimitis, E. Papista, E. Pachatouridou, E.F. Iliopoulou, G. Marnellos, M. Konsolakis, I.V. Yentekakis, J. Environ. Chem. Eng. 4 (2016) 1629. https://doi.org/10.1016/j.jece.2016.02.025
  11. L. Xu, S. Niu, D. Wang, C. Lu, Q. Zhang, K. Zhang, J. Li, J. Ind. Eng. Chem. 63 (2018) 391. https://doi.org/10.1016/j.jiec.2018.02.039
  12. Y. Jung, Y.J. Shin, Y.D. Pyo, C.P. Cho, J. Jang, G. Kim, Chem. Eng. J. 326 (2017) 853. https://doi.org/10.1016/j.cej.2017.06.020
  13. H. Pan, Y. Guo, H.T. Bi, Chem. Eng. J. 280 (2015) 66. https://doi.org/10.1016/j.cej.2015.05.093
  14. T. Chaieb, C. Thomas, S. Casale, C. Louis, L. Delannoy, Catal. Lett. 148 (2018) 539. https://doi.org/10.1007/s10562-017-2276-1
  15. E. Yuan, K. Zhang, G. Lu, Z. Mo, Z. Tang, J. Ind. Eng. Chem. 42 (2016) 142. https://doi.org/10.1016/j.jiec.2016.07.030
  16. G. Sui, Z. Xue, D. Zhou, Y. Wang, Y. Shen, Y. Zong, Y. Liu, T. Qiu, S. Zhu, J. Ind. Eng. Chem. 51 (2017) 229. https://doi.org/10.1016/j.jiec.2017.03.006
  17. V.S. Prasad, P. Aghalayam, Ind. Eng. Chem. Res. 56 (2017) 11705. https://doi.org/10.1021/acs.iecr.7b02058
  18. A.M. Beale, F. Gao, I. Lezcano-Gonzalez, C.H.F. Peden, J. Szanyi, Chem. Soc. Rev. 44 (2015) 7371. https://doi.org/10.1039/C5CS00108K
  19. L. Castoldi, E. Aneggi, R. Matarrese, R. Bonzi, J. Llorca, A. Trovarelli, L. Lietti, Catal. Today 258 (2015) 405. https://doi.org/10.1016/j.cattod.2015.02.024
  20. A. Mihaylova, A. Naydenov, D. Kovacheva, E. Ivanova, D. Stoyanova, P. Stefanov, Catal. Commun. 10 (2009) 1288. https://doi.org/10.1016/j.catcom.2009.02.009
  21. F. Gunnarsson, J.A. Pihl, T.J. Toops, M. Skoglundh, H. Harelind, Appl. Catal. B: Environ. 202 (2017) 42. https://doi.org/10.1016/j.apcatb.2016.09.009
  22. J.O. Jo, Q.H. Trinh, S.H. Kim, Y.S. Mok, Catal. Today 310 (2018) 42. https://doi.org/10.1016/j.cattod.2017.05.028
  23. J.B. Lee, H.-C. Kang, O.J. Jo, S.Y. Mok, Catalysts 7 (2017).
  24. T.H. Ihm, J.O. Jo, Y.J. Hyun, Y.S. Mok, Appl. Chem. Eng. 27 (2016) 92. https://doi.org/10.14478/ace.2015.1130
  25. J.O. Jo, Y.S. Mok, Appl. Chem. Eng. 29 (2018) 103.
  26. M. Koebel, G. Madia, M. Elsener, Catal. Today 73 (2002) 239. https://doi.org/10.1016/S0920-5861(02)00006-8
  27. C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Chem. Commun. (2004) 2718.
  28. M. Iwasaki, H. Shinjoh, Appl. Catal. A: Gen. 390 (2010) 71. https://doi.org/10.1016/j.apcata.2010.09.034
  29. L. Zhang, X.-l. Sha, L. Zhang, H.-b. He, Z.-h. Ma, L.-w. Wang, Y.-x. Wang, L.-x. She, AIP Adv. 6 (2016)075015. https://doi.org/10.1063/1.4959813
  30. Y. Li, Y. Li, P. Wang, W. Hu, S. Zhang, Q. Shi, S. Zhan, Chem. Eng. J. 330 (2017) 213. https://doi.org/10.1016/j.cej.2017.07.018
  31. Y. Xue, W. Sun, Q. Wang, L. Cao, J. Yang, Chem. Eng. J. 335 (2018) 612. https://doi.org/10.1016/j.cej.2017.11.011
  32. X. Wang, J. Cheng, X. Wang, Y. Shi, F. Chen, X. Jing, F. Wang, Y. Ma, L. Wang, P. Ning, Chem. Eng. J. 333 (2018) 402. https://doi.org/10.1016/j.cej.2017.09.127
  33. X. Zhou, X. Huang, A. Xie, S. Luo, C. Yao, X. Li, S. Zuo, Chem. Eng. J. 326 (2017) 1074. https://doi.org/10.1016/j.cej.2017.06.015
  34. C. Yu, B. Huang, L. Dong, F. Chen, Y. Yang, Y. Fan, Y. Yang, X. Liu, X. Wang, Chem. Eng. J. 316 (2017) 1059. https://doi.org/10.1016/j.cej.2017.02.024
  35. C. Xu, W. Sun, L. Cao, T. Li, X. Cai, J. Yang, Chem. Eng. J. 308 (2017) 980. https://doi.org/10.1016/j.cej.2016.09.119
  36. A. Xie, X. Zhou, X. Huang, L. Ji, W. Zhou, S. Luo, C. Yao, J. Ind. Eng. Chem. 49 (2017) 230. https://doi.org/10.1016/j.jiec.2017.01.034
  37. A.M. Abu-Jrai, J.A. Yamin, K.A. Ibrahim, O.A. Al-Khashman, M.A. Al-Shaweesh, M.A. Hararah, U. Rashid, M. Ahmad, G.M. Walker, A.a.H. Al-Muhtaseb, J. Ind. Eng. Chem. 20 (2014) 1650. https://doi.org/10.1016/j.jiec.2013.08.012
  38. Q.H. Trinh, S.H. Kim, Y.S. Mok, Chem. Eng. J. 302 (2016) 12. https://doi.org/10.1016/j.cej.2016.05.030
  39. U. Kogelschatz, Plasma Chem. Plasma Process. 23 (2003) 1. https://doi.org/10.1023/A:1022470901385
  40. D.B. Nguyen, W.G. Lee, J. Ind. Eng. Chem. 57 (2018) 322. https://doi.org/10.1016/j.jiec.2017.08.039
  41. Q.H. Trinh, Y.S. Mok, Korean J. Chem. Eng. 33 (2016) 735. https://doi.org/10.1007/s11814-015-0300-y
  42. G. Froment, K. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, third ed., Wiley, New York, 2010.
  43. D.B. Nguyen, W.G. Lee, Chem. Eng. J. 294 (2016) 58. https://doi.org/10.1016/j.cej.2016.02.061
  44. D.B. Nguyen, W.G. Lee, RSC Adv. 6 (2016) 26505. https://doi.org/10.1039/C6RA01485B
  45. D.B. Nguyen, W.G. Lee, J. Ind. Eng. Chem. 52 (2017) 7. https://doi.org/10.1016/j.jiec.2017.03.033
  46. D.B. Nguyen, W.G. Lee, J. Ind. Eng. Chem. 32 (2015) 187. https://doi.org/10.1016/j.jiec.2015.08.016

Cited by

  1. Optimizing Washcoating Conditions for the Preparation of Zeolite-Based Cordierite Monoliths for NOx CH4-SCR: A Required Step for Real Application vol.58, pp.27, 2018, https://doi.org/10.1021/acs.iecr.9b01216
  2. Plasma-Assisted Selective Catalytic Reduction for Low-Temperature Removal of NOx and Soot Simulant vol.9, pp.10, 2018, https://doi.org/10.3390/catal9100853
  3. Removal of dilute ethylene using repetitive cycles of adsorption and plasma-catalytic oxidation over Pd/ZSM-5 catalyst vol.53, pp.33, 2020, https://doi.org/10.1088/1361-6463/ab79d9
  4. Atmospheric Pressure Plasma for Diesel Particulate Matter Treatment: A Review vol.11, pp.1, 2021, https://doi.org/10.3390/catal11010029
  5. High-Throughput NOx Removal by Two-Stage Plasma Honeycomb Monolith Catalyst vol.55, pp.9, 2018, https://doi.org/10.1021/acs.est.1c00750