• Title/Summary/Keyword: Caspase 1

Search Result 1,285, Processing Time 0.035 seconds

Columbianadin Inhibits Cell Proliferation by Inducing Apoptosis and Necroptosis in HCT116 Colon Cancer Cells

  • Kang, Ji In;Hong, Ji-Young;Choi, Jae Sue;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.320-327
    • /
    • 2016
  • Columbianadin (CBN), a natural coumarin from Angelica decursiva (Umbelliferae), is known to have various biological activities including anti-inflammatory and anti-cancer effects. In this study, the anti-proliferative mechanism of actions mediated by CBN was investigated in HCT-116 human colon cancer cells. CBN effectively suppressed the growth of colon cancer cells. Low concentration (up to $25{\mu}M$) of CBN induced apoptosis, and high concentration ($50{\mu}M$) of CBN induced necroptosis. The induction of apoptosis by CBN was correlated with the modulation of caspase-9, caspase-3, Bax, Bcl-2, Bim and Bid, and the induction of necroptosis was related with RIP-3, and caspase-8. In addition, CBN induced the accumulation of ROS and imbalance in the intracellular antioxidant enzymes such as SOD-1, SOD-2, catalase and GPx-1. These findings demonstrate that CBN has the potential to be a candidate in the development of anti-cancer agent derived from natural products.

Apoptosis Induction by Menadione in Human Promyelocytic Leukemia HL-60 Cells

  • Sa, Duck-Jin;Lee, Eun-Jee;Yoo, Byung-Sun
    • Toxicological Research
    • /
    • 제25권3호
    • /
    • pp.113-118
    • /
    • 2009
  • Cell death induced by menadione (vitamin K-3,2-methyl-1,4-naphthoquinone) has been investigated in human promyelocytic leukemia HL-60 cells. Menadione was found to induce both apoptosis and necrosis in HL-60 cells. Low concentration ($1{\sim}$50 ${\mu}$M) of menadione induced apoptotic cell death, which was demonstrated by typical DNA ladder patterns on agarose gel electrophoresis and flow cytometry analysis. In contrast, a high concentration of menadione (100 ${\mu}$M) induced necrotic cell death, which was demonstrated by DNA smear pattern in agarose gel electrophoresis. Necrotic cell death was accompanied with a great reduction of cell viability. Menadione activated caspase-3, as evidenced by both increased protease activity and proteolytic cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) into 85 kDa cleavage product. Caspase-3 activity was maximum at 50 ${\mu}$M of menadione, and very low at 100 ${\mu}$M of menadione. Taken together, our results showed that menadione induced mixed types of cell death, apoptosis at low concentrations and necrosis at high concentrations in HL-60 cells.

Chloramphenicol Arrests Transition of Cell Cycle and Induces Apoptotic Cell Death in Myelogenous Leukemia Cells

  • KANG KI YOUNG;CHOI CHUL HEE;OH JAE YOUNG;KIM HYUN;KWEON GI RYANG;LEE JE CHUL
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.913-918
    • /
    • 2005
  • Chloramphenicol is a broad-spectrum antimicrobial agent against Gram (+) and Gram (-) bacteria. Its clinical application has recently been limited, due to severe side effects such as bone marrow suppression and aplastic anemia. In the present study, the cytotoxic effects of chloramphenicol were investigated in vitro using chronic myelogenous leukemia K562 cells. Chloramphenicol inhibited the growth of K562 cells in a dose-dependent manner, but their growth was restored after the cessation of chloramphenicol, indicating reversible cytotoxic effects. The expression of cell cycle regulatory molecules, including E2F-1 and cyclin D1, was decreased at the translational and/or transcriptional level after being treated with a therapeutic blood level ($20{\mu}g/ml$) of chloramphenicol. Chloramphenicol also induced apoptotic cell death through a caspase-dependent pathway, which was verified by Western blot analysis and the enzymatic activity of caspase-3. These results demonstrated that chloramphenicol inhibited the cell growth through arresting the transition of the cell cycle, and induced apoptotic cell death through a caspase-dependent pathway at therapeutic concentrations.

Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

  • Lee, Yun-Jung;Won, Tae Joon;Hyung, Kyeong Eun;Lee, Mi Ji;Moon, Young-Hye;Lee, Ik Hee;Go, Byung Sung;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권1호
    • /
    • pp.73-78
    • /
    • 2014
  • Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-2 expression in Jurkat T cells, and this increased TCR-triggered AICD and enhanced TNFR gene expression. Also, knockdown of Bcl-2 in Jurkat T cells suppressed the gene expression of FLIP, TNF receptor-associated factors 3 (TRAF3) and TRAF4. Furthermore, suppressed Bcl-2 expression increased caspase-3 and diminished nuclear factor kappa B (NF-${\kappa}B$) translocation.

백합고금탕가미방의 항종양 효과에 관한 연구 (Study on Anti-Cancer Effects of Backhapgogumtanggami-bang)

  • 김병주;문구;문석재;원진희;김태균;배남규
    • 대한한의학회지
    • /
    • 제22권2호
    • /
    • pp.64-74
    • /
    • 2001
  • Objectives : The effects of aqueous extract of Backhapgogumtanggami-bang (BGTG, a newly devised herb medicine) on the induction of apoptotic cell death were investigated in human lymphoid origin leukemia cell lines, HL-60. Methods : Cells were treated with various concentrations and $400{\;}\mu\textrm{g}/ml$ BGTG for 12 hr. Genomic DNA was isolated and separated on 1.8% agarose gels. Lysates from the cells were used to measure the activity of caspase-2, -3, -8, and -9 protease by using fluorogenic peptide. Cells were preincubated with SB-203580 for 30 min. Nuclear protein from the cells was incubated with oliginucleotide probe of AP-l and NF-kB. Nuclear extracts from the cells were isolated and reacted with antibodies. Results : The viability of HL-60 cells were markedly decreased by BGTG extract in a dose- and time-dependent manner. BGTG extract induced the apoptotic death of HL-60 cells which was characterized by the DNA fragmentation. The activations of Caspase-2, 3, and 9 were induced by BGTG. However, selective inhibition of the p38 mitogen-activated protein kinase pathways by SB-203580 did not affect the extent of BGTG extract-induced cell death. Furthermore, we observed the transient activations of transcriptional factors such as AP-l and NF-kB. Conclusions : These results suggest that BGTG extract induced apoptotic death of HL-60 cells and caspase activations as well as the modulation of transcriptional factors such as AP-1 and NF-kB.

  • PDF

Dose-dependent UV Stabilization of p53 in Cultured Human Cells Undergoing Apoptosis Is Mediated by Poly(ADP-ribosyl)ation

  • Won, Jungyeon;Chung, So Young;Kim, Seung Beom;Byun, Boo Hyeong;Yoon, Yoo Sik;Joe, Cheol O.
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.218-223
    • /
    • 2006
  • The effect of poly(ADP-ribosyl)ation on the stability of p53 in SK-HEP1 cells treated with UV light was examined. Intracellular levels of p53 increased in cells treated with a low dose of UV light ($20J/m^2$), whereas they increased but then declined after a higher dose of UV ($100J/m^2$). Intracellular levels of p53 in the UV treated SK-HEP1 cells were dependent on the UV dose. Use of proteasome inhibitors revealed that p53 is degraded by proteasomal proteolysis after high doses of UV light. We present evidence that, at low doses, poly(ADP-ribose)polymerase (PARP) poly(ADP-ribosyl) ates p53 and protects it from proteasomal degradation before caspase-3 is activated, whereas at high doses the cells undergo UV induced apoptosis and PARP is cleaved by caspase-3 before it can protect p53 from degradation. Destabilization of p53 by cleavage of PARP may be important in cell fate decision favoring apoptosis.

p62, a Phosphotyrosine Independent Ligand of SH2 Domain of $p56^{Ick}$, is Cleaved by Caspase-3 during Apoptosis in Jurkat Cells

  • Joung, Insil
    • Animal cells and systems
    • /
    • 제5권2호
    • /
    • pp.145-151
    • /
    • 2001
  • p62 is a phosphotyrosine-independent ligand of the SH2 domain of $p56^{Ick}$, a T-cell specific Src family tyrosine kinase. Recently p62 has been shown to interact with a number of proteins, such as $PKC\varsigma$ and ubiquitin, and implicated in important cellular functions such as cell proliferation. Since the two p62 interacting proteins, $p56^{Ick}$ and $PKC\varsigma$, have been reported to play roles in cell death, 1 have addressed the potential role of p62 during apoptosis in Jurkat cells in this study. Herein 1 show that p62 was specifically cleaved into two peptides by a caspase-3-like activity during Fas-receptor mediated apoptosis in Jurkat cells. This cleavage generated two fragments with molecular weights of about 35 kDa that differed in subcellular localizations. The N-terminal cleaved fragment was present in the detergent-insoluble fraction whereas the C-terminal fragment was found in the detergent-soluble fraction. In addition, the C-terminal fragment appeared to be subjected to further degradation as apoptosis prolonged. Moreover, overexpression of p62 in Jurkat cells attenuated the Fas receptor mediated apoptosis, suggesting that p62 is involved in apoptotic signal transduction pathway in lymphocytes.

  • PDF

Protective effects of Camellia sinensis fruit and fruit peels against oxidative DNA damage

  • Ahn, Joung-Jwa;Jang, Tae-Won;Park, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.237-244
    • /
    • 2021
  • Camellia sinensis, Green tea, contains phenolic compounds that act to scavenge reactive oxygen species (ROS), such as catechin, epicatechin, etc. In contrast with the tea leaf, the bioactivity of its fruit and the fruit peels remains still unclear. This study focused on the effects of fruit and fruit peels of C. sinensis (FC and PC) against oxidative DNA damage in NIH/3T3 cells. The scavenging effects of FC and PC on ROS were assessed using 1,1-diphenyl-2-picryl hydrazyl or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radicals. The measurement of ROS in cellular levels was conducted by DCFDA reagent and the protein expression of γ-H2AX, H2AX, cleaved caspase-3, p53, and, p-p53 was analyzed by immunoblotting. The gene expressions of p53 and H2AX were assessed using polymerase chain reaction techniques. The major metabolites of FC and PC were quantitatively measured analyzed and the amounts of phenolic compounds and flavonoids in PC were greater than those in FC. Further, PC suppressed ROS production, which protects the oxidative stress-induced DNA damage through reducing H2AX, p53, and caspase-3 phosphorylation. These results refer that the protective effects of FC and PC are mediated by inhibition of p53 signaling pathways, probably via the bioactivity of phenolic compounds. Thus, FC and PC can serve as a potential antioxidant in DNA damage-associated diseases.

Protective effect of platelet-rich plasma against cold ischemia-induced apoptosis of canine adipose-derived mesenchymal stem cells

  • Suji Shin;Sung-Eon Kim;Seong-Won An;Seong-Mok Jeong;Young-Sam Kwon
    • 대한수의학회지
    • /
    • 제64권1호
    • /
    • pp.2.1-2.8
    • /
    • 2024
  • This study was performed to assess the antiapoptotic effect of canine platelet-rich plasma (PRP) treated on the canine adipose-derived mesenchymal stem cells (cMSCs) under cold ischemic conditions. The effect of preventing apoptosis of cMSCs was evaluated in the apoptotic condition induced by cold ischemic injury in vitro. To determine the progression of apoptosis, the changes in cell nucleus were observed using 4',6-diamidino-2-phenylindole (DAPI) fluorescence staining. In addition, we examined the mitochondrial membrane potential (MMP) and caspase-3 activity. When the cold hypoxic injury was applied to cMSCs, the apoptotic change was observed by DAPI staining, mitochondrial staining for MMP, and caspase-3 assay. PRP significantly decreased the number of apoptotic cells. Nuclear shrinkage and fragmentation of apoptotic cells in control groups were observed by DAPI staining. The MMP was recovered by the treatment of PRP. In addition, when the luminescence intensity was measured for caspase-3 activity, the value was significantly higher in the PRP treated groups than the control groups. The results of this study showed that the PRP may have a beneficial effect on apoptosis induced by cold ischemic injury.

상황을 이용한 보건기능 개선제의 인체폐암세포 apoptosis 유발에 관한 연구 (Induction of Apoptotic Cell Death by Healthful Decoction Utilizing Phellinus Linteus in Human Lung Carcinoma Cells)

  • 박철;이용태;강경화;최병태;정영기;최영현
    • 동의생리병리학회지
    • /
    • 제18권3호
    • /
    • pp.759-766
    • /
    • 2004
  • In the present study, we investigated the effects of aqueous extract of the healthful decoction utilizing Phellinus linteus (HDPL) on the cell growth of human lung carcinoma tumor cell line A549. Exposure of A549 cells to HDPL resulted in growth inhibition and induction of apoptosis in a dose-dependent manner as measured by hemocytometer counts, fluorescence microscopy and flow cytometric analysis. This increase in apoptosis was associated with inhibition and/or degradation of apoptotic target proteins such as poly(ADP-ribose) polymerase (PARP), b-catenin and phospholipase C- 1 (PLC- 1) protein. HDPL treatment induced the down-regulation of anti-apoptotic Bcl-2 expression, an anti-apoptotic gene, however, the level of Bax. a pro-apoptotic gene, was increased by HDPL treatment. In addition, HDPL-induced apoptotis of A549 cells was connected with activation of caspase-3 and caspase-9 protease in a dose-dependent manner, however, the levels of inhibitor of apoptosis proteins family were remained unchanged. Taken together, these results indicated that the anti-proliferative effects of HDPL were associated with the induction of apoptotic cell death through regulation of several major growth regulatory gene products such as Bcl-2 family expression and caspase protease activity, and HDPL may have therapeutic potential in human lung cancer.