Dose-dependent UV Stabilization of p53 in Cultured Human Cells Undergoing Apoptosis Is Mediated by Poly(ADP-ribosyl)ation

  • Won, Jungyeon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Chung, So Young (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kim, Seung Beom (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Byun, Boo Hyeong (College of Oriental Medicine, Daegu Haany University) ;
  • Yoon, Yoo Sik (Department of Medical Research and Development, Korea Institute of Oriental Medicine) ;
  • Joe, Cheol O. (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Received : 2005.10.24
  • Accepted : 2005.12.19
  • Published : 2006.04.30

Abstract

The effect of poly(ADP-ribosyl)ation on the stability of p53 in SK-HEP1 cells treated with UV light was examined. Intracellular levels of p53 increased in cells treated with a low dose of UV light ($20J/m^2$), whereas they increased but then declined after a higher dose of UV ($100J/m^2$). Intracellular levels of p53 in the UV treated SK-HEP1 cells were dependent on the UV dose. Use of proteasome inhibitors revealed that p53 is degraded by proteasomal proteolysis after high doses of UV light. We present evidence that, at low doses, poly(ADP-ribose)polymerase (PARP) poly(ADP-ribosyl) ates p53 and protects it from proteasomal degradation before caspase-3 is activated, whereas at high doses the cells undergo UV induced apoptosis and PARP is cleaved by caspase-3 before it can protect p53 from degradation. Destabilization of p53 by cleavage of PARP may be important in cell fate decision favoring apoptosis.

Keywords

Acknowledgement

Supported by : National Cancer Center, Korea Research Foundation

References

  1. Agarwal, M. L., Agarwal, A., Taylor, W. R., Wang, Z. Q., Wagner, E. F., et al. (1997) Defective induction but normal activation and function of p53 in mouse cells lacking poly-ADPribose polymerase. Oncogene 15, 1035-1041 https://doi.org/10.1038/sj.onc.1201274
  2. Appella, E. and Anderson, C. W. (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268, 2764-2772 https://doi.org/10.1046/j.1432-1327.2001.02225.x
  3. Barak, Y., Juven, T., Haffner, R., and Oren, M. (1993) mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461-468
  4. Bean, L. J. and Stark, G. R. (2001) Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV. Oncogene 20, 1076-1084 https://doi.org/10.1038/sj.onc.1204204
  5. Bean, L. J. and Stark, G. R. (2002) Regulation of the accumulation and function of p53 by phosphorylation of two residues within the domain that binds to Mdm2. J. Biol. Chem. 277, 1864-1871 https://doi.org/10.1074/jbc.M108881200
  6. Bouchard, V. J., Rouleau, M., and Poirier, G. G. (2003) PARP-1, a determinant of cell survival in response to DNA damage. Exp. Hematol. 31, 446-454 https://doi.org/10.1016/S0301-472X(03)00083-3
  7. Buckbinder, L., Talbott, R., Velasco-Miguel, S., Takenaka, I., Faha, B., et al. (1995) Induction of the growth inhibitor IGFbinding protein 3 by p53. Nature 377, 646-649 https://doi.org/10.1038/377646a0
  8. Burkle, A., Heilbronn, R., and zur Hausen, H. (1990) Potentiation of carcinogen-induced methotrexate resistance and dihydrofolate reductase gene amplification by inhibitors of poly (adenosine diphosphate-ribose) polymerase. Cancer Res. 50, 5756-5760
  9. Chang, D., Chen, F., Zhang, F., McKay, B. C., and Ljungman, M. (1999) Dose-dependent effects of DNA-damaging agents on p53-mediated cell cycle arrest. Cell Growth Differ. 10, 155-162
  10. Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., et al. (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-1014 https://doi.org/10.1126/science.1092734
  11. Ding, R., Pommier, Y., Kang, V. H., and Smulson, M. (1992) Depletion of poly(ADP-ribose) polymerase by antisense RNA expression results in a delay in DNA strand break rejoining. J. Biol. Chem. 267, 12804-12812
  12. el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825 https://doi.org/10.1016/0092-8674(93)90500-P
  13. Fuchs, S. Y., Adler, V., Buschmann, T., Wu, X., and Ronai, Z. (1998) Mdm2 association with p53 targets its ubiquitination. Oncogene 17, 2543-2547 https://doi.org/10.1038/sj.onc.1202200
  14. Gao, C. F., Ren, S., Zhang, L., Nakajima, T., Ichinose, S., et al. (2001) Caspase-dependent cytosolic release of cytochrome c and membrane translocation of Bax in p53-induced apoptosis. Exp. Cell Res. 265, 145-151 https://doi.org/10.1006/excr.2001.5171
  15. Giaccia, A. J. and Kastan, M. B. (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973-2983 https://doi.org/10.1101/gad.12.19.2973
  16. Hans, M. A., Muller, M., Meyer-Ficca, M., Burkle, A., and Kupper, J. H. (1999) Overexpression of dominant negative PARP interferes with tumor formation of HeLa cells in nude mice: evidence for increased tumor cell apoptosis in vivo. Oncogene 18, 7010-7015 https://doi.org/10.1038/sj.onc.1203178
  17. Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997) Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299. Herceg, Z. and Wang, Z. Q. (2001) Functions of poly(ADPribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 477, 97-110 https://doi.org/10.1016/S0027-5107(01)00111-7
  18. Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67, 425-479 https://doi.org/10.1146/annurev.biochem.67.1.425
  19. Honda, R., Tanaka, H., and Yasuda, H. (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25-27 https://doi.org/10.1016/S0014-5793(97)01480-4
  20. Kaina, B. (2003) DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem. Pharmacol. 66, 1547-1554 https://doi.org/10.1016/S0006-2952(03)00510-0
  21. Kapoor, M. and Lozano, G. (1998) Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc. Natl. Acad. Sci. USA 95, 2834-2837
  22. Kastan, M. B., Zhan, Q., el-Deiry, W. S., Carrier, F., Jacks, T., et al. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxiatelangiectasia. Cell 71, 587-597 https://doi.org/10.1016/0092-8674(92)90593-2
  23. Kharbanda, S., Yuan, Z. M., Weichselbaum, R., and Kufe, D. (1998) Determination of cell fate by c-Abl activation in the response to DNA damage. Oncogene 17, 3309-3318 https://doi.org/10.1038/sj.onc.1202571
  24. Kim, J. W., Kim, K., Kang, K., and Joe, C. O. (2000a) Inhibition of homodimerization of poly(ADP-ribose) polymerase by its C-terminal cleavage products produced during apoptosis. J. Biol. Chem. 275, 8121-8125 https://doi.org/10.1074/jbc.275.11.8121
  25. Kim, J. W., Won, J., Sohn, S., and Joe, C. O. (2000b) DNAbinding activity of the N-terminal cleavage product of poly (ADP-ribose) polymerase is required for UV mediated apoptosis. J. Cell Sci. 113, 955-961
  26. Kubbutat, M. H., Jones, S. N., and Vousden, K. H. (1997) Regulation of p53 stability by Mdm2. Nature 387, 299-303 https://doi.org/10.1038/387299a0
  27. Latonen, L., Taya, Y., and Laiho, M. (2001) UV-radiation induces dose-dependent regulation of p53 response and modulates p53-HDM2 interaction in human fibroblasts. Oncogene 20, 6784-6793 https://doi.org/10.1038/sj.onc.1204883
  28. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347 https://doi.org/10.1038/371346a0
  29. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323-331 https://doi.org/10.1016/S0092-8674(00)81871-1
  30. Li, M., Luo, J., Brooks, C. L., and Gu, W. (2002) Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem. 277, 50607-50611 https://doi.org/10.1074/jbc.C200578200
  31. Lindahl, T., Satoh, M. S., Poirier, G. G., and Klungland, A. (1995) Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem. Sci. 20, 405-411 https://doi.org/10.1016/S0968-0004(00)89089-1
  32. Maki, C. G. and Howley, P. M. (1997) Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol. Cell. Biol. 17, 355-363 https://doi.org/10.1128/MCB.17.1.355
  33. Mendoza-Alvarez, H. and Alvarez-Gonzalez, R. (2001) Regulation of p53 sequence-specific DNA-binding by covalent poly(ADP-ribosyl)ation. J. Biol. Chem. 276, 36425-36430 https://doi.org/10.1074/jbc.M105215200
  34. Miyashita, T. and Reed, J. C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299 https://doi.org/10.1016/0092-8674(95)90412-3
  35. Morgan, W. F. and Cleaver, J. E. (1982) 3-Aminobenzamide synergistically increases sister-chromatid exchanges in cells exposed to methyl methanesulfonate but not to ultraviolet light. Mutat. Res. 104, 361-366 https://doi.org/10.1016/0165-7992(82)90170-1
  36. Nakano, K. and Vousden, K. H. (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683-694 https://doi.org/10.1016/S1097-2765(01)00214-3
  37. Nosseri, C., Coppola, S., and Ghibelli, L. (1994) Possible involvement of poly(ADP-ribosyl) polymerase in triggering stress-induced apoptosis. Exp. Cell Res. 212, 367-373 https://doi.org/10.1006/excr.1994.1156
  38. Noteborn, M. H., Zhang, Y. H., and van der Eb, A. J. (1998) Apoptin specifically causes apoptosis in tumor cells and after UV-treatment in untransformed cells from cancer-prone individuals: a review. Mutat. Res. 400, 447-455 https://doi.org/10.1016/S0027-5107(98)00016-5
  39. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., et al. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058 https://doi.org/10.1126/science.288.5468.1053
  40. Owen-Schaub, L. B., Zhang, W., Cusack, J. C., Angelo, L. S., Santee, S. M., et al. (1995) Wild-type human p53 and a temperature- sensitive mutant induce Fas/APO-1 expression. Mol. Cell. Biol. 15, 3032-3040 https://doi.org/10.1128/MCB.15.6.3032
  41. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., and Vogelstein, B. (1997) A model for p53-induced apoptosis. Nature 389, 300-305 https://doi.org/10.1038/38525
  42. Reinke, V. and Lozano, G. (1997) Differential activation of p53 targets in cells treated with ultraviolet radiation that undergo both apoptosis and growth arrest. Radiat. Res. 148, 115-122 https://doi.org/10.2307/3579567
  43. Ryu, J., Lee, H. J., Kim, K. A., Lee, J. Y., Lee, K. S., et al. (2004) Intracellular delivery of p53 fused to the basic domain of HIVTat. Mol. Cells 17, 353-359
  44. Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., et al. (1998) DNA damage activates p53 through a phosphorylation- acetylation cascade. Genes Dev. 12, 2831-2841 https://doi.org/10.1101/gad.12.18.2831
  45. Simbulan-Rosenthal, C. M., Rosenthal, D. S., Luo, R., and Smulson, M. E. (1999) Poly(ADP-ribosyl)ation of p53 during apoptosis in human osteosarcoma cells. Cancer Res. 59, 2190-2194
  46. Van Gool, L., Meyer, R., Tobiasch, E., Cziepluch, C., Jauniaux, J. C., et al. (1997) Overexpression of human poly(ADPribose) polymerase in transfected hamster cells leads to increased poly(ADP-ribosyl)ation and cellular sensitization to gamma irradiation. Eur. J. Biochem. 244, 15-20 https://doi.org/10.1111/j.1432-1033.1997.00015.x
  47. Wang, Z. Q., Stingl, L., Morrison, C., Jantsch, M., Los, M., et al. (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev. 11, 2347-2358 https://doi.org/10.1101/gad.11.18.2347
  48. Wesierska-Gadek, J., Wang, Z. Q., and Schmid, G. (1999) Reduced stability of regularly spliced but not alternatively spliced p53 protein in PARP-deficient mouse fibroblasts. Cancer Res. 59, 28-34
  49. Wesierska-Gadek, J., Bohrn, E., Herceg, Z., Wang, Z. Q., and Wurzer, G. (2000) Differential susceptibility of normal and PARP knock-out mouse fibroblasts to proteasome inhibitors. J. Cell. Biochem. 78, 681-696 https://doi.org/10.1002/1097-4644(20000915)78:4<681::AID-JCB17>3.0.CO;2-D
  50. Zhao, R., Gish, K., Murphy, M., Yin, Y., Notterman, D., et al. (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981-993