DOI QR코드

DOI QR Code

Apoptosis Induction by Menadione in Human Promyelocytic Leukemia HL-60 Cells

  • Sa, Duck-Jin (Department of Life Science, Kyonggi University) ;
  • Lee, Eun-Jee (Department of Life Science, Kyonggi University) ;
  • Yoo, Byung-Sun (Department of Life Science, Kyonggi University)
  • Published : 2009.09.01

Abstract

Cell death induced by menadione (vitamin K-3,2-methyl-1,4-naphthoquinone) has been investigated in human promyelocytic leukemia HL-60 cells. Menadione was found to induce both apoptosis and necrosis in HL-60 cells. Low concentration ($1{\sim}$50 ${\mu}$M) of menadione induced apoptotic cell death, which was demonstrated by typical DNA ladder patterns on agarose gel electrophoresis and flow cytometry analysis. In contrast, a high concentration of menadione (100 ${\mu}$M) induced necrotic cell death, which was demonstrated by DNA smear pattern in agarose gel electrophoresis. Necrotic cell death was accompanied with a great reduction of cell viability. Menadione activated caspase-3, as evidenced by both increased protease activity and proteolytic cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) into 85 kDa cleavage product. Caspase-3 activity was maximum at 50 ${\mu}$M of menadione, and very low at 100 ${\mu}$M of menadione. Taken together, our results showed that menadione induced mixed types of cell death, apoptosis at low concentrations and necrosis at high concentrations in HL-60 cells.

Keywords

References

  1. Brown, P.C., Dulik, D.M. and Jones, T.W. (1991). The toxicity of menadione (2-methyl-1,4-naphthoquinone) and two thioether conjugates studied with isolated renal epithelial cells. Arch. Biochem. Biophys., 285, 187-196 https://doi.org/10.1016/0003-9861(91)90348-M
  2. Chlebowski, R.T., Dietrich, M., Akman, S. and Block, J.B. (1985). Vitamin K3 inhibition of malignant murine cell growth and human tumor colony formation. Cancer Treat. Rep., 69, 527-532
  3. Di Monte, D., Bellomo, G., Thor, H., Nicotera, P. and Orrenius, S. (1984). Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular $Ca^{2+}$ homeostasis. Arch. Biochem. Biophys., 235, 343-350 https://doi.org/10.1016/0003-9861(84)90207-8
  4. Earnshaw, W.C., Martins, L.M. and Kaufmann, S.H. (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem., 68, 383-424 https://doi.org/10.1146/annurev.biochem.68.1.383
  5. Ferrer, I. and Planas, A.M. (2003). Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J. Neuropathol. Exp. Neurol., 62, 329-339 https://doi.org/10.1093/jnen/62.4.329
  6. Hetts, S.W. (1998). To die or not die: An overview of apoptosis and its role in disease. J. AM. Med. Assoc., 279, 300-307 https://doi.org/10.1001/jama.279.4.300
  7. Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature, 407, 770-776 https://doi.org/10.1038/35037710
  8. Hotti, A., Jarvinen, K., Siivola, P. and Holtta, E. (2000). Caspases and mitochondria in c-Myc-induced apoptosis: identification of ATM as a new target of caspases. Oncogene, 19, 2354-2362 https://doi.org/10.1038/sj.onc.1203567
  9. Janicke, R.U., Sprengart, M.L., Wati, M.R. and Porter, A.G. (1998). Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem., 273, 9357-9360 https://doi.org/10.1074/jbc.273.16.9357
  10. Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T.J., Kirschner, M.W., Koths, K., Kwiatkowski, D.J. and Williams, L.T. (1997). Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science, 278, 294-298 https://doi.org/10.1126/science.278.5336.294
  11. Los, M., Mozoluk, M., Ferrari, D., Stepczynska, A., Stroh, C., Renz, A., Herceq, Z., Wang, Z.Q. and Schulze-Osthoff, K. (2002). Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell, 13, 978-988 https://doi.org/10.1091/mbc.01-05-0272
  12. Lippke, J.A., Gu, Y., Sarnecki, C., Caron, P.R. and Su, M.S. (1996). Identification and characterization of CPP32/Mch2 homolog 1, a novel cysteine protease similar to CPP32. J. Biol. Chem., 271, 1825-1828 https://doi.org/10.1074/jbc.271.4.1825
  13. Majno, G. and Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol., 146, 3-15
  14. Margolin, A., Akman, S.A., Leong, L.A., Morgan, R.J., Somlo, G., Raschko, J.W., Ahn, C. and Doroshow, J.H. (1995). Phase I study of mitomycin C and menadione in advanced solid tumors. Cancer Chemother. Pharmacol., 36, 293-298 https://doi.org/10.1007/BF00689046
  15. Morgan, W.A., Hartley, J.A. and Cohen, G.M. (1992). Quinoneinduced DNA single strand breaks in rat hepatocytes and human chronic myelogenous leukaemic K562 cells. Biochem. Pharmacol., 44, 215-221 https://doi.org/10.1016/0006-2952(92)90003-2
  16. Nagata, S., Nagase, H., Kawane, K., Mukae, N. and Fukuyama, H. (2003). Degradation of chromosomal DNA during apoptosis. Cell Death Differ., 10, 108-116 https://doi.org/10.1038/sj.cdd.4401161
  17. Ngo, E.O., Sun, T.P., Chang, J.Y., Wang, C.C., Chi, K.H., Cheng, A.L. and Nutter, L.M. (1991). Menadione-induced DNA damage in a human tumor cell line. Biochem. Pharmacol., 42, 1961-1968 https://doi.org/10.1016/0006-2952(91)90596-W
  18. Nicotera, P., McConkey, D., Svensson, S.A., Bellomo, G. and Orrenius, S. (1988). Correlation between cytosolic $Ca^{+2}$ concentration and cytotoxicity in hepatocytes exposed to oxidative stress. Toxicology, 52, 55-63 https://doi.org/10.1016/0300-483X(88)90196-5
  19. Packham, G., Ashmun, R.A. and Cleveland, J.L. (1996). Cytokines suppress apoptosis independent of increases in reactive oxygen levels. J. Immunol., 156, 2792-2800
  20. Scovassi, A.I. and Poirier, G.G. (1999). Poly (ADP-ribosylation) and apoptosis. Mol. Cell. Biochem., 199, 125-137 https://doi.org/10.1023/A:1006962716377
  21. Stubberfield, C.R. and Cohen, G.M. (1988). $NAD^+$ depletion and cytotoxicity in isolated hepatocytes. Biochem. Pharmacol., 37, 3967-3974 https://doi.org/10.1016/0006-2952(88)90081-0
  22. Wyllie, A.H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogeneous endonuclease activation. Nature, 284, 555-556 https://doi.org/10.1038/284555a0
  23. Yoo, B.S., Jung, K.H., Hana, S.B. and Kim, H.M. (1997). Apoptosis-mediated immunotoxicity of polychlorinated biphenyls (PCBs) in murine splenocytes. Toxicol. Lett., 91, 83-89 https://doi.org/10.1016/S0378-4274(96)03861-1