Chloramphenicol Arrests Transition of Cell Cycle and Induces Apoptotic Cell Death in Myelogenous Leukemia Cells

  • KANG KI YOUNG (Department of Anatomy, Seonam University College of Medicine) ;
  • CHOI CHUL HEE (Department of Microbiology and Institute of Infectious Diseases, Kyungpook National University School of Medicine) ;
  • OH JAE YOUNG (Department of Microbiology and Institute of Infectious Diseases, Kyungpook National University School of Medicine) ;
  • KIM HYUN (Department of Anatomy, Kosin University College of Medicine) ;
  • KWEON GI RYANG (Department of Biochemistry, Seonam University College of Medicine) ;
  • LEE JE CHUL (Department of Microbiology and Institute of Infectious Diseases, Kyungpook National University School of Medicine)
  • Published : 2005.10.01

Abstract

Chloramphenicol is a broad-spectrum antimicrobial agent against Gram (+) and Gram (-) bacteria. Its clinical application has recently been limited, due to severe side effects such as bone marrow suppression and aplastic anemia. In the present study, the cytotoxic effects of chloramphenicol were investigated in vitro using chronic myelogenous leukemia K562 cells. Chloramphenicol inhibited the growth of K562 cells in a dose-dependent manner, but their growth was restored after the cessation of chloramphenicol, indicating reversible cytotoxic effects. The expression of cell cycle regulatory molecules, including E2F-1 and cyclin D1, was decreased at the translational and/or transcriptional level after being treated with a therapeutic blood level ($20{\mu}g/ml$) of chloramphenicol. Chloramphenicol also induced apoptotic cell death through a caspase-dependent pathway, which was verified by Western blot analysis and the enzymatic activity of caspase-3. These results demonstrated that chloramphenicol inhibited the cell growth through arresting the transition of the cell cycle, and induced apoptotic cell death through a caspase-dependent pathway at therapeutic concentrations.

Keywords

References

  1. Abou-Khalil, S., W. H. Abou-Khalil, and A. A. Yunis. 1980. Differential effects of chloramphenicol and its nitroso analogue on protein synthesis and oxidative phosphorylation in rat liver mitochondria. Biochem. Pharmacol. 29: 2605-2609 https://doi.org/10.1016/0006-2952(80)90074-X
  2. Cardoso, M. C., H. Leonhardt, and B. Nadal-Ginard. 1993. Reversal of terminal differentiation and control of DNA replication: Cyclin A and cdk2 specifically localize at subnuclear sites of DNA replication. Cell 74: 979-992 https://doi.org/10.1016/0092-8674(93)90721-2
  3. Firkin, F. C. and A. W. Linnane. 1968. Differential effects of chloramphenicol on the growth and respiration of mammalian cells. Biochem. Biophys. Res. Commun. 32: 398-402 https://doi.org/10.1016/0006-291X(68)90674-8
  4. Goh, K. 1979. Chloramphenicol and chromosomal morphology. J. Med. 10: 159-166
  5. Gong, J., F. Traganos, and Z. Darzynkiewicz. 1994. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal. Biochem. 218: 314-319 https://doi.org/10.1006/abio.1994.1184
  6. Guimaraes, C. A. and R. Linden. 2000. Chloramphenicol induces apoptosis in the developing brain. Neuropharmacol. 39: 1673-1679 https://doi.org/10.1016/S0028-3908(99)00246-4
  7. Harbour, J. W. and D. C. Dean. 2000. Rb function in cell-cycle regulation and apoptosis. Nat. Cell Biol. 2: E65-67 https://doi.org/10.1038/35008695
  8. Hartwell, L. H. and T. A. Weinert. 1989. Checkpoints: Controls that ensure the order of cell cycle events. Science 246: 629-634 https://doi.org/10.1126/science.2683079
  9. Holt, D. E., T. A. Ryder, A. Fairbairn, R. Hurley, and D. Harvey. 1997. The myelotoxicity of chloramphenicol: In vitro and in vivo studies: I. In vitro effects on cells in culture. Hum. Exp. Toxicol. 16: 570-576 https://doi.org/10.1177/096032719701601004
  10. Jeong, Y. W., K. S. Kim, J. Y Oh, J. C. Park, J. H. Bang, S. W. Choi, and J. C. Lee. 2003. Growth inhibition and apoptosis induction of gastric cancer cells by copper (II) glycinate complex. J. Microbiol. Biotechnol. 13: 394-399
  11. Kapnusnik-Uner, J. E., M. A. Sande, and H. F. Chambers. 1996. Antimicrobial agents: Tetracycline, chloramphenicol, erythromycin, and miscellaneous antibacterial agents, pp. 1123-1154. In J. G. Hardman, L. E. Limbrid, P. B. Molinoff, R. W. Roddon, and A. G. Gilman (eds.). Goodman & Gilman's The Pharmacological Basis of Therapeutics. 9th ed. McGraw-Hill, New York, U.S.A
  12. Kato, J., H. Matsushime, S. W. Hiebert, M. E. Ewen, and C. J. Sherr. 1993. Direct binding of cyclin D to the retinoblastoma product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase cdk4. Genes Dev. 7: 331-342 https://doi.org/10.1101/gad.7.3.331
  13. Kim, M. K., Y.-H. Cho, J. M. Kim, M. W. Chun, S. K. Lee, Y. Lim, and C.-H. Lee. 2003. Inhibition of cell-cycle progression in human promyelocytic leukemia HL-60 cells by MCS-C2, novel cyclin-dependent kinase inhibitor. J. Microbiol. Biotechnol. 13: 607-612
  14. Kim, N. S., K. H. Chang, B. S. Chung, S. H. Kim, J. H. Kim, and G. M. Lee. 2003. Characterization of humanized antibody produced by apoptosis-resistant CHO cells under sodium butyrate-induced condition. J. Microbiol. Biotechnol. 13: 926-936
  15. Lafarge-Frayssinet, C., S. Robbana-Barnat, C. Frayssinet, L. Toucas, and F. Decloitre. 1994. Cytotoxicity and DNA damaging potency of chloramphenicol and six metabolites: A new evaluation in human lymphocytes and Raji cells. Mutat. Res. 320: 207-215 https://doi.org/10.1016/0165-1218(94)90047-7
  16. Leiter, L. M., H. S. Thatte, C. Okafor, P. W. Marks, D. E. Golan, and K. R. Bridges. 1999. Chloramphenico]-induced mitochondrial dysfunction is associated with decreased transferrin receptor expression and ferritin synthesis in K562 cells and is unrelated to IRE-IRP interactions. J. Cell. Physiol. 180: 334-344 https://doi.org/10.1002/(SICI)1097-4652(199909)180:3<334::AID-JCP4>3.0.CO;2-Q
  17. Lim, H., M. K. Kim, Y.-H. Cho, J. M. Kim, Y. Lim, and C.-H. Lee. 2004. Inhibition of cell cycle progression and induction of apoptosis in HeLa cells by HY558-1, a novel CDK inhibitor isolated from Penicillium minioluteum F558. J. Microbiol. Biotechnol. 14: 978-984
  18. Marks, M. I. and C. Laferriere. 1982. Chloramphenicol: Recent developments and clinical indications. Clin. Pharm. 1: 315-320
  19. Miller, A. M. and A. A. Yunis. 1982. Nitroso-chloramphenicol: Cell cycle specificity of action. Pharmacology 24: 61-66 https://doi.org/10.1159/000137577
  20. Murray, T. R., K. M. Downey, and A. A. Yunis. 1983. Chloramphenicol-mediated DNA damage and its possible role in the inhibitory effects of chloramphenicol on DNA synthesis. J. Lab. Clin. Med. 102: 926-932
  21. Nurse, P. 1994. Ordering of S phase and M phase in the cell cycle. Cell 79: 547-550 https://doi.org/10.1016/0092-8674(94)90539-8
  22. Ohtsubo, M. and J. M. Roberts. 1993. Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259: 1908-1912 https://doi.org/10.1126/science.8384376
  23. Ohtsubo, M., A. M. Theodoras, J. Schumacher, J. M. Roberts, and M. Pagano. 1995. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell. Biol. 15: 2612-2624 https://doi.org/10.1128/MCB.15.5.2612
  24. Robbana-Barnat, S., F. Dec]oitre, C. Frayssinet, J. M. Seigneurin, L. Toucas, and C. Lafarge-Frayssinet. 1997. Use of human lymphoblastoid cells to detect the toxic effect of chloramphenicol and metabolites possibly involved in aplastic anemia in man. Drug Chem. Toxicol. 20: 239-253 https://doi.org/10.3109/01480549709003880
  25. Salem, Z., T. Murray, and A. A. Yunis. 1981. The nitroreduction of chloramphenicol by human liver tissue. J. Lab. Clin. Med. 97: 881-886
  26. Yao, J. D. C. and R. C. Moellering, Jr. 1999. Antibacterial agents, pp. 1474-1504. In P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (eds.). Manual of Clinical Microbiology. 7th ed. American Society for Microbiology, Washington DC, U.S.A
  27. Yunis, A. A. 1973. Chloramphenicol-induced bone marrow suppression. Semin. Hematol. 10: 225-234
  28. Yunis, A. A. 1989. Chloramphenicol toxicity: 25 years of research. Am. J. Med. 87: 44N-48N
  29. Yunis, A. A., A. M. Miller, Z. Salem, and G. K. Arimura. 1980. Chloramphenicol toxicity: Pathogenetic mechanisms and the role of the p-$NO_{2}$ in aplastic anemia. Clin. Toxicol. 17: 359-373 https://doi.org/10.3109/15563658008989985
  30. Yunis, A. A., G. K. Arimura, and M. Isildar. 1987. DNA damage induced by chloramphenicol and its nitroso derivative: Damage in intact cells. Am. J. Hematol. 24: 77-84 https://doi.org/10.1002/ajh.2830240110