• Title, Summary, Keyword: Cardinal function

Search Result 20, Processing Time 0.028 seconds

ON THE ASYMPTOTIC CONVERGENCE OF ORTHONORMAL CARDINAL REFINABLE FUNCTIONS

  • Kim, Rae-Young
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.3
    • /
    • pp.133-137
    • /
    • 2008
  • We prove an extended version of asymptotic behavior of the orthonormal cardinal refinable functions from Blaschke products introduced by Contronei et al [2]. In fact, we show the orthonormal cardinal refinable function ${\varphi}_{k,q}$ converges in $L^p(\mathbb{R})$ ($2{\leq}p{\leq}{\infty}$) to the Shannon refinable function as ${\kappa}{\rightarrow}{\infty}$ uniforml on a class $\mathcal{Q}_{A,B}$ of real symmetric polynomials determined by positive constants $A{\leq}B$.

  • PDF

Estimation of Cardinal Temperatures for Germination of Seeds from the Common Ice Plant Using Bilinear, Parabolic, and Beta Distribution Models

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.236-241
    • /
    • 2016
  • The common ice plant (Mesembryanthemum crystallinum L.) has some medicinal uses and recommended plant in closed-type plant factory. The objective of this study was to estimate the cardinal temperatures for seed germination of the common ice plant using bilinear, parabolic, and beta distribution models. Seeds of the common ice plant were germinated in the dark in a growth chamber at four constant temperatures: 16, 20, 24, and $28^{\circ}C$. For this, four replicates of 100 seeds were placed on two layers of filter paper in a 9-cm petri dish and radicle emergence of 0.1 mm was scored as germination. The times to 50% germination were 4.3, 2.5, 2.0, and 1.8 days at 16, 20, 24, and $28^{\circ}C$, respectively, indicating that the germination of this warm-weather crop increased with temperature. Next, the time course of germination was modeled using a logistic function. For the selection of an accurate model, seeds were germinated in the dark at constant temperatures of 6, 12, 32, and $36^{\circ}C$. Germination started earlier and increased rapidly at temperatures above $20^{\circ}C$. The minimum, optimal, and maximum temperatures were estimated by regression of the inverse of time to 50% germination rate, as a function of the temperature gradient. The different functions estimated differing minimum, optimal and maximum temperatures, with 5.7, 27.7, and $36.5^{\circ}C$, respectively for the bilinear function, 13.4, 25.0, and $36.6^{\circ}C$, respectively, for the parabolic function and 7.8, 25.9, and $36.0^{\circ}C$, respectively, for the beta distribution function. The models estimated that the inverse of time to 50% germination rate was 0 at 6 and $36^{\circ}C$. The observed final germination rates at 12 and $32^{\circ}C$ were 62 and 97%, respectively. Our data show that a beta distribution function provides a useful model for estimating the cardinal temperatures for germination of seed from the common ice plant.

A Study on Wave Transformation Analysis using Higher-Order Finite Element (고차유한요소의 파랑변형해석에의 적용에 관한 소고)

  • Jung, Tae-Hwa;Lee, Jong-In;Kim, Young-Taek;Ryu, Yong-Uk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.108-116
    • /
    • 2009
  • The present study introduces a Legendre interpolation function which is capable of analyzing wave transformation effectively in a finite element method. A Lagrangian interpolation function has been mostly used for a finite element method with a higher-order interpolation function. Although this function has an advantage of giving an accurate result with less number of elements, simulation time increases. Calculation time can be reduced by mass lumping, whereas the accuracy of solution is lowered. In this study, we introduce a modified Lagrangian interpolation function, Legendre cardinal interpolation, which can reduce simulation time with keeping up favorable accuracy. Through various numerical simulations using a Boussinesq equations model, the superiority of the Legendre cardinal interpolation function to a Lagrangian interpolation function was shown.

Relative Risk Aversion and Stochastic-Statistical Dominance (상대적(相對的) 위험(危險)과 추계적(推計的)-통계적(統計的) 우세법칙(優勢法則))

  • Lee, Dae-Joo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.2
    • /
    • pp.33-44
    • /
    • 1989
  • This paper presents stochastic-statistical dominance rules which eliminate dominated alternatives thereby reduce the number of satisficing alternatives to a manageable size so that the decision maker can choose the best alternative among them when neither the utility function nor the probability distribution of outcomes is exactly known. Specifically, it is assumed that only the characteristics of the utility function and the value function are known. Also, it is assumed that prior probabilities of the mutually exclusive states of nature are not known, but their relative bounds are known. First, the notion of relative risk aversion is used to describe the decision maker's attitude toward risk, which is defined with the acknowledgement that the utility function of the decision maker is a composite function of a cardinal value function and a utility function with-respect to the value function. Then, stochastic-statistical dominance rules are developed to screen out dominated alternatives according to the decision maker's attitude toward risk represented in the form of the measure of relative risk aversion.

  • PDF

Comparison of Seed Germination Response to Temperature by Provenances in Fraxinus rhynchophylla (채취산지별 물푸레나무 종자의 온도에 대한 발아반응 비교)

  • Choi, Chung Ho;Seo, Byeong Soo;Tak, Woo Sik;Cho, Kyung Jin;Kim, Chang Soo;Han, Sang Urk
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.6
    • /
    • pp.576-581
    • /
    • 2008
  • The germination responses of Fraxinus rhynchophylla seeds collected from four provenances to constant temperature were investigated over the range $5{\sim}35^{\circ}C$. Difference among seeds in percentage and rate of germination and cardinal temperatures was observed. The seeds from Inje had high germination percentage at low temperature ($5{\sim}15^{\circ}C$) whereas those from Gangneung had high germination percentage at high temperature ($30{\sim}35^{\circ}C$). Three cardinal temperatures viz., the base ($T_b$), the maximum ($T_m$) and the optimum ($T_o$) for germination percentage and germination rate varied among four provenances. $T_b$, $T_m$ and $T_o$ for F. rhynchophylla seed germination as estimated by the quadratic models were the lowest in Inje while those were the highest in Gangneung. The cardinal temperatures ($T_b$, $T_m$ and $T_o$) were estimated by linear sub- and supra-optimal models for germination rate as a function of temperature response. $T_b$ was the lowest in Hoengseong while that was the highest in Gangneung. $T_m$ and $T_o$ were the lowest in Inje while those were also the highest in Gangneung. That is, the seeds from the provenance where the annual mean temperature was high had the higher cardinal temperatures ($T_b$, $T_m$ and $T_o$) as compared to seeds from the provenance where the annual mean temperature was low.

Lung mucus: A clinician′s view

  • Kim, Won-Dong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • /
    • pp.45-52
    • /
    • 1996
  • In ancient times, respiration's perceived purpose was only to cool the blood, and nasal mucus was thought to be a discharge from the brain. Later it was demonstrated that fluids cannot travel from the brain to the nose. It appears that credit for pointing out the medical significance of bronchial secretions and the biological value of the exocrine function of the lungs belongs to Laennec. He described the “chronic idiopathic pituitous catarrh” known today as bronchorrhea, which is characterized by paroxysms of expectoration. The importance of all this is that airway secretions, and their alterations, became one of the cardinal signs of many respiratory diseases (1).

  • PDF

Comparison of Cardinal Temperatures of Lettuce Using Bilinear, Parabolic, and Beta Distribution Functions (선형, 쌍곡선과 Beta 함수를 이용한 상추의 주요 온도 비교)

  • Cha, Mi-Kyung;Kim, Chun-Sik;Austin, Jirapa;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.39-42
    • /
    • 2014
  • The objective of this study was to estimate cardinal temperatures for germination of lettuce (Lactuca sativar L.) using bilinear, parabolic, and beta distribution functions. Seeds of lettuce were germinated in a growth chamber at 7 constant temperatures: 10, 14, 16, 20, 24, 28, and $32^{\circ}C$. Four replicates of 100 seeds were placed on two layers of filter paper in a 9 cm petri-dish. Radicle emergence of 1 mm was scored as germination. The time course of germination was modeled using a logistic function. These minimum, optimum, and maximum temperatures were estimated by regression of the inverse of time to 50% germination rate against the temperature gradient. In bilinear function, minimum, optimum, and maximum temperatures were $7.9^{\circ}C$, $23.3^{\circ}C$, and $28.0^{\circ}C$, respectively. In parabolic function, minimum, optimum, and maximum temperatures were $9.7^{\circ}C$, $19.5^{\circ}C$, and $29.4^{\circ}C$, respectively. In beta distribution function, minimum, optimum, and maximum temperatures were $3.7^{\circ}C$, $20.7^{\circ}C$ and $32.0^{\circ}C$, respectively. Minimum, optimum, and maximum ranges of temperatures were $3.7{\sim}9.7^{\circ}C$, $19.5{\sim}23.3^{\circ}C$, and $28.0{\sim}32.0^{\circ}C$, respectively.

Path Planning for Autonomous Mobile Robots by Modified Global DWA (수정된 전역 DWA에 의한 자율이동로봇의 경로계획)

  • Yoon, Hee-Sang;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.389-397
    • /
    • 2011
  • The global dynamic window approach (DWA) is widely used to generate the shortest path of mobile robots considering obstacles and kinematic constraints. However, the dynamic constraints of robots should be considered to generate the minimum-time path. We propose a modified global DWA considering the dynamic constraints of robots. The reference path is generated using A* algorithm and smoothed by cardinal spline function. The trajectory is then generated to follows the reference path in the minimum time considering the robot dynamics. Finally, the local path is generated using the dynamic window which includes additional terms of speed and orientation. Simulation and experimental results are presented to verify the performance of the proposed method.

FABRICATION AND CHARACTERIZATION OF NONLINEAR OPTICAL GLASSES

  • Cardinal, T.;Fargin, E.;Le Flem, G.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • /
    • pp.4-5
    • /
    • 2001
  • Advent of lasers offering high intensity beam has opened the glass to the nonlinear optic (NLO). The high electric field associated with such laser beams can be so large that high order components of the glass polarization can be measured. Such development is of scientific and technological interests in particular in systems involving an intensity-dependent refractive index and/or ultra-fast response (<10$\^$-12/s). From a scientific viewpoint the NLO response intensity must be understood as a function of the glass composition. On the other hand, large family of applications are presently under investigation in various fields of optical materials or systems e.g. laser glasses for fusion energy, soliton propagation for ultra-long distances, ultra-fast-switching, optical storage etc....(omitted)

  • PDF