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Abstract

This paper presents stochastic-statistical dominance rules which eliminate
dominated alternatives thereby reduce the number of satisficing alternatives to a
manageable size so that the decision maker can choose the best alternative among
them when neither the utility function nor the probability distribution of cutcomes
is exactly known. Specifically, it is assumed that only the characteristics of the
utility function and the value function are known. Also, it is assumed that prior
probabilities of the mutually exclusive states of nature are not known, but their -
relative bounds are known. First, the notion of relative risk aversion is used to
describe the decision maker’s attitude toward risk, which is defined with the
acknowledgement that the utility function of the decision maker is a composite
function of a cardinal value function and a utility function with respect to the value
function. Then, stochastic-statistical dominance rules are developed to screen out
dominated a]_ternatives according to the decision maker’s attitude toward risk

represented in the form of the measure of relative risk aversion.

1. Introduction tude toward risk of a decision maker(DM).

The first measure of risk aversion was

There has been extensive work on what suggested by Arrow[1] and Pratt[18],
risk means and how we can measure atti- independently, on a risky choice under
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uncertainty. This measure deals with situa-
tions where alternatives have a single attr-
ibute. Next, Duncan[3] suggested a mea-
sure of risk aversion for multiattribute
decision making under uncertainty.

These measures, however, are repre-
sented in terms of the utility function of a
DM with the assumption that the utility
function reflects the DM’s attitude toward
risk. This is only partially true because the
utility function is to represent not only
attitude toward risk but also strength of
preference. That is, the utility function is a
mixture of the cardinal value function for
strength of preference and the utility func-
tion with respect to the value function for
attitude toward risk. Thus, the measures
mentioned above do not exactly reflect the
DM’s risk attitude,

Pyer and Sarin[5] proposed a measure
for relative risk attitude of a DM, measure
of relative risk aversion. This measure
solely depends on the DM’s risk attitude by
separating the utility function into two
parts: the cardinal value function for stren-
gth of preference under certainty and the
utility function with respect to the value
function for risk attitude under uncertainty.
Lee, Fraser, and Miller[15] extended the
result of Dyer and Sarin to multiattribute
decision making under uncertainty.

Meanwhile, the idea of dominance of one
alternative over another has been deve-
loped in economics and finance fields. The
main results are stochastic dominance(2],
[8], [91, [10], [16], [17]. [22] and statistical
dominance[6], [7], [12]. Stochastic domi-

nance is used to choose the nondominated
alternatives out of available alternatives
with the assumption that the probability
distribution is known exactly but the utility
function is not known precisely, On the
other hand, statistical dominance is used to
choose the nondominated alternatives with
the assumption that the probability distri-
bution is not known exactly but the ctility
function is known precisely.

It is quite awkward to realize that there
has been a big gap between research in
measures of risk aversion and dominance
principles. Quite recently, Lee[14] proposed
a bridge between the measure of risk aver-
sion and stochastic dominance. The pur-
pose of this paper is to extend the result of
Lee[14] in such a way to develop stochastic

-statistical dominance using the measure of

_relative risk aversion.

2. Measures of Risk Attitude

What is risk? How does a DM feel about
risk involved in his decision making situ-
ation? How can we express a DM’s risk
attitude in quantifiable form? These have
been important questions hanging around
research fields in economics, finance, orga-
nizational behavior, psychology, and deci-
sion sciences. The answer to these may be
the following several measures of risk aver-
sion.

Pratt[18] and Arrow[1] asserted that a

measure of risk aversion can be expressed
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in terms of the utility function of a DM.
They independently developed a measure of

risk aversion, r(x},
r{x)=-—-u" (X) /U {X), --rmrrreremrerenmanans (1)

given the single attribute utility function
wx) of a DM. Duncan[3] introduced a
multiattribute measure of risk aversionina

matrix form, R(Xx},
R{x)=[~— u{x)/u{x)],

where u(x) is the multiattribute utility func-
tion of DM and u;, and u,;, are the first and
the second partial derivatives with respect
to i and(i, j), respectively.

Dyer and Sarin[4] proposed a measurable
value function which provides an interval
scale of measurement for preferences under
centainty. Later they[5] proposed that the
utility function of a DM, which provides an
interval scale of measurement for prefe-
rences under uncertainty, can be divided
into the cardinal value function and the
utility function with respect to the value
function. They defined a measure of rela-

tive risk aversion,
T (v = —uw v{x)) /0 (v(x), e (3

where v(x) is the univariate cardinal value
function and u.(v) is DM’s utility function
with respect to v.

Lee, Fraser, and Milier[15] extended the
results of Dyer and Sarin to multiattribute
decision making and proposed that a multi-
attribute utility function is a mixture of
multivariate cardinal value function and a

utility function with respect to the value

function. They further developed a measure
of risk attitude of a DM in a multiattribute
setting, measure of multiatiribute relative

risk aversion, r,{v(X)),

rAviEN= —u’ (V) /U (v{x). e (4)

Both measures of relative risk attitude
developed by Dyer and Sarin and Lee,
Fraser, and Miller were shown to exist
without their uniqueness. Krzysztofowicz
f13] did experiments to explore the reia-
tionship between the value function and the
utility function and found that in certain
circumstances relative risk attitude of DMs

is invariant.

" 3. Dominance Principles
3.1. Stochastic Dominance

When a DM is faced with a situation to
choose the best one among several alte-
rnatives, he calculates the expected utility
for each alternative and then checoses the
one with the maximum expected utility[11],
[19], [20]. To do so he has to know the
utility function and the probability distri-
bution of outcomes. Stochastic dominance
is very useful when he does not know the
utility function exactly.

Wthien the utility function is not known
exactly, he cannot calculate the expected
utility(EU) for each alternative so that he
cannot compare them in terms of their EUs.
But if there is a little bit of information

about characteristics of the utility function,
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then he can somehow screen out dominated
alternatives and reduce the number of
nondominated alternatives. Then, the DM
can choose the best one from the remaining
nondominated alternatives.

Specifically, suppose that there are two
alternatives X and Y such that their cumul-
ative distribution function{cdf} s are Fy and
Fv, respectively. Further suppose that the
DM’s utility function is u{x). Then, EUsof X

and Y are
Elu, X]=["" u(x) dF.(x),
Efu, Yi={"" u{x} dFy{x),

If EU of X is greater than or equal to that
of Y, that is, E[u, X] >=E[u, Y], then it is said
that X is preferred to Y. Usually, we comp-
are E[u, X] with E[u, Y] by calculating
them. But in some cases, we can compare
them without knowing u(x) in its exact

form. That is, from equation(5},

E[u, X]—E[u Y] =""u(x) - d(F—Fy) (%)
=[u{x) {{(Fx—Fy}x}}]

— [0 (Fx—Fy) (%)
=[TT0(X) (Fe—Fy) ()dx werrvemen (6)

Soifu'(x}z=0and Fy(x) = Fx(x) ¥x, then
Efu, X]=E[u, Y]. That is, if the utility
function is nondecreasing and the cdf of
Y(Fy) is always greater than or equal to
that of X(Fy), then X is preferred to Y,
denoted as X =,Y. This is called 1st-degree
stochastic dominance.

Second-degree stochastic dominance can
be derived with the similar idea by expa-
nding equation{6}.

Efu, X]—E[u, Y]
:Ij: u{x} (Fy—Fx} (x)dx

=[u(x) {(F}—Fx) (x}}]
_Ij: w(x) (Fy—F%) (x)dx
=70 )} (Fy—FY) (x)dx o (7

where Fy(x)=[*_ F,{t)dt,

Fi(x)=["_ Fipdt,

So it is easily seen from(7) that if u"{x)<0
and FV =FY ¥x, then E[u, X]2E[u, Y].
That is, if the utility function is concave and
the integral of cdf of Y is always greater
than or equal to that of X, then X is prefe-
rred to Y, denoted as X =,Y. This is called
2nd-degree stochastic dominance.

Lee[14] developed stochastic dominance
when the utility function of a DM can be
represented using a cardinal value function,
v{+), to represent the strength of preference
and utility function with respect to v, uv{-},
to represent his risk attitude. Then, the DM’
s utility function u(x) is denoted as u.{(v{x))
where uv(v) is a univariate function which
exclusively represents his attitude toward
risk.

When possible cutcomes of an alternative
are represented as single attribute conse-
quences, we can think of a class of utility

function U, such that

Ui={us |% =u', 20 x=X;
Vi=(v| 95 = ve0 20, xeX)
Uy V(X))

where u{x)=

According to Lee[14], Ist-degree stochastic

dominance can be defined as follows:
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Definition 1. 1et X and Y be two alter-
natives under consideration and Fx and Fy
be the cumulative distribution functions for
X and Y, respectively. Then, X is preferred
to Y(X=,Y) in the sense of lst-degree
stochastic dominance if E[u, X] =ZE[u, Y]
for all u, €U, and veV,.

Also from Lee[14], we can state lst-deg-
ree stochastic dominance based on Defi-
nition 1 as follows:

Theorem 1. lsi—degree stochastic domi-
nance,

For all x, X=,Y if Fy(x)=Fy(x) where
DM’s utility function uf+)=u,(v(-)} is such
that u,e=U,, ve= V.

In Theorem 1, it was assumed that the
decision maker’s utility function uy and the
value function v are nondecreasing. Thus,
no specific attitude toward risk in inferred
from the assumption.

Next, we can think of another class of
utility functions U, which is a subset of U;
such that

d*u,(v)

U,={u. ! u, U, ave =u", <0, x=X}

or U,={u, | vwvel,, r,(v)=0, x&X}
and a subset of V, such that

12=4{v | vEV,, d—x‘; ={, x=X},

Again, according to Lee[14], 2nd-degree
stochastic dominance can be defined as
follows:

Definition 2. Lex X and Y be two alter-
natives under consideration and F, and Fy
be the cumulative distribution functions for
X and Y, respectively. Then, X is preferred
to Y(X=,Y} in the sense of 2nd-degree

stochastic dominance if E[u, X]=E[u, Y]
for all u,€U; and v&EV,,.

It is important to note that a utility func-
tion which belongs to U, represents relat-
ively risk averse(RRA) behavior of the
decision maker. That is, a function uy that
belongsto U, satisfiesu”y <0andu’, >0 and

u”y
u'y

thus, r.(v}=- =0. Then, by definition,

the decision maker is relatively risk ave-
rse(RRA). Now we can state second-deg-
ree stochastic dominance as follows:

Theorem 2.[14] 2nd-degree stochastic
dominance

Let H,(x)=Fy(x)-Fx(x) and H.(x)=J*
H,(t)dt. For all x, X =, Y if H,(x) =0 where
DM’s utility function u(-)=u.{v(-)} is such
that u,=U; and v&V,,. '

3.2. Statistical Dominance

Statistical dominance is used to select the
most preferred alternative given a set of
alternatives under consideration by parti-
ally ordering the alternatives in terms of the
EU criterion which is also used in stochastic
dominance. It is assumed that there exists a
finite number of mutually exclusive and
exhaustive states of nature(K) and the DM
has precise knowledge about the form of the
utility function depending on the selected
alternative and the state of nature.

However, it is assumed that he does not
know exactly the probabilities of the states
of nature. Rather he can only rank the order

of states of nature in terms of probability
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attached to each state of nature which can

be denoted as
PR_P]H-;[ 20 fOI’ all k:]_,,z, Tt K_L e (9)

where P, isthe probability that state k isthe
true state and K is the number of the states
of nature. Now suppose that there are two
alternatives X and Y and the utility func-
tion of DM is u,, given i** anternative and
the true state is k. Then expected utilities

for alternatives X and Y are
Elu, X]=3%, P;- ug,
E[U, YI=38_, Pj- Uy, --omrerreeree (10)

IfE[n, X] =E[u, Y], then we say that X is
preferred te Y. From equation(10), using
Abel’s summation identity[6],

E[u, X]—E[u, Y]

=ZK., P;-u;—=E_, P, uy;

=25, P;- {uy—uy;)

=28, [E, (uxe—uvs}] (P—Puy),
(Pier=0)

From equation(9), each{P;-P;,,) is nonne-
gative. If

E:i,=1 (U)(s_uvs} =0 for all j: L 2; R Kv

then E[u, X] = E[u, Y]. That is, X dominates
Y if equations(9) and{11) hold true.

If the DM can identify probability ratios
more specifically, then the order of proba-
bilities of states of nature can be repre-

sented as follows:

szgl';sz for all k=1,2,-+ K-1, (12

where H, and L, are nonnegative constants

which have the meaning of maximum and
minimum proportions of Py, to P,,,, respe-
ctively,

Under these assumptions, statistical
dominance is stated as follows[6], [21]:

Theorem 3. statistical dominance

Let X and Y be two alternatives under
consideration. Given maximum occurrence
ratios and minimum occurrence ratios H,,
L, i=1, 2,--, K-1, alternative X dominates
Y in the sense of statistical dominance,
denoted as

XE =Y, if Cuoy[f(U: H, L, K)>0] where

f(U: H, L, K)= 3 [{Il Ln/I Hn}{Usc—Un}]

o E—-1
and Hle =Ii Lm:]..
m= m=K

Here, f(U: H, L, K} is actually a function
of K wvariables(U,, U,,---, Ux) with 2(K-1)
parameters and Cu,.,[f(U: H, L, K)=0]
denctes a set of 2% inequalities. And Uy,
is defined to be a conditional expected
utility for the alternative X given that the

true state is k™ state, k=1, 2.+, K.

3.3. Stochastic-Statistical Dominance

Similar to stochaétic dominance and
statistical dominance, stochastic-statis-
tical dominance is used to select the subset
of nondominated alternatives which is
guaranteed to include the most preferred
alternative, given a set of alternatives. The
basic assumptions of stochastic-statistical
dominance are as follows: The utility func-
tion of a DM is not known precisely, And he
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does not have the exact knowledge about
the true state of nature, i.e., the prior proba-
bility of each state of nature is not known
except its relative ranking and/or maxi.
mum and minimum occurrence ratios.
However, he can assess the conditional
probability distributions given each state of
nature for each alternative.

As before, suppose that there exists a
finite number(K) of mutually exclusive and
exhaustive states of nature to represent the
real world. Under the assumption and with
the definitions used in stochastic deminance
and statistical dominance, stochastic
-statistical dominanceis stated as follows:
For h=1, 2, alternative X dominates Y, with
the conditional cdfs Fyx, and Fy.{k=1, 2,---,
K), respectively, given that the true state is
k, in the sense of h'-degree stochastic
-statistical dominance for maximum occu-
rrence ratios(H;, H,---, Hx. ;) and minimum
occurrence ratios(L., L., -, Hx_1), denoted
as X% =,Y, if E{u, X] =E[u, Y] for all us
Sp, h=1, 2, where

S;={u| u{x)=0 ¥x},
S, ={u| ueS, u'{x}=90 vx}

The main theorem for stochastic-statis-
tical dominance is stated below[21]: Given
maximuimn occurrence ratios Hy and mini-
mum occurrence ratios L,, for k=1, 2.,
K-1,

1) X% =>,Y if Caroa[f(D(x): H, L, K]1=0]
for all x where DM’s utility function
ulx}e 5,

2) X4 =,Y if Cu, [f(D*(x): H, L, K)=0]
for all x where DM’s utility function
ux)e 52

where £(D*x) © H, L, K)
=% ({1l Lo/l Hn) (DAY,
L) =Fuw (x)—Fx (%),

D% (x)= |- {Fu()—Fx ()}dt and

0 K-1
0 He=I Ly=1,
m=1 me=K

Here, Fu(x)[Fv(x)] is a conditional
cumulative distribution function for the
alternative X[Y] given that k' state is the

true state.

4. Relative Risk Aversien and
Stochastic—Statistical

Dominance

Leel14] showed that if the DM is conser-
vative under certainty and relatively risk
averse, stochastic dominance can beused to
screen out dominated alternatives when the
utility function is not exactly known but the
probability distribution of outcomes is
known precisely, In this section, we will
extend the result of Lee{l4] to stochastic
-statistical dominance when neither the
utility function nor the probability distri-
bution is known exactly.

Now let the utility function be u{x)=u,
(v(x)) where v(x) is a cardinal value func-
tion and u.{v) is a utility function with
respect to v. Suppose that there are m
mutually exclusive and exhaustive states of
nature and the probability of each state of
nature being true is p;{i=1, 2.---, m) where p,’
s are such that H, and L; are maximum and

minimum occurrence ratios of p;/pi+: which
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satisfy equation(12),
Let fi(x), g'ix)i=1,2,-,
probability density functions for alter-

m) be conditional

natives X and Y, respectively, given that
true state is the i state. Then, expected
utilities of X and Y are, respectively,

E(u, X)=3pi fu(f (x)dx,

E{u. Y) =§lpj Julxgixidx, ... (13)

Now we define Ist-degree stochastic-statis-
tical dominance as follows:

Pefinition 3. Let Fy; and Fy, be the cendi-
tional cumulative distribution functions for
two alternatives X and Y, respectively.
Then, alternative X is preferred to Y in the
sense of lst-degree stochastic-statistical
dominance, denoted as X% =,Y,if E[u, X] >
Efu, Y] for all u,=U, and ve=V,.

Theorem 4. Given maximum occurrence
ratios and minimum occurrence ratios H,,
L, i=1, 2.
tion{12), X% =,Y if

. m-1, which satisfy equa-

- Hhi Lh ..................
121 T H, Diix) =0 (14)

where 1 L.=1I%., H,=1, Di{x)=Fy,(x)

-Fxi(x)=[*_ Di(t)dt and DM’s utility func-

tion u{v{-}) is such that v’ =0, v(x)=0.
<Proof> Since the utility function u is a

composite function,

. dulv)  dv(x) _
wix) = dv T dx

'y (v) - v (x)

From(13),

E(u, F)-E(y, G)Iép. f u(x)[fi{x)-g'(x)] dx.

Let Df = E(u, F) -E{u, G} and
Di(x) =-[f (x)-g'(x)]. Also, let
Dix) =[G'(x)-FY{x)]= {| . Di(t) dt. Then,

Df=-3 b1 [ u(x) Dh(x)dx
=3p, [ (%) Di(x)dx
=2p [\ V(%) Di(dx

=f W\ V@ - EpDlodx

=f uy - v(x) [py DV(x)+p.DA(x)+

Ifu'y20,v(x)=0, and Q=0, then E{u, F)=
E(u, G} where Q= p,DV(x) + p,D3(X) +---
=+ P DM (x)=3"
without loss of generality that all p/’s are

—1-p:PA{x). We can assume

positive. We now employ mathematical

induction for proof.
(1) Let m=2, {2}=p, DA {x)+p.Di(x),

H, 22'-le
1}H1—1—* 12 2L1 "’pllepz
Q(2)=p1D‘1(X)+ p:D3{x)

= Lyp.Dy(x) + P2 Di(x)
=p.(L, D\ {x)+Di(x)) = 0.

i) Li=1— H2ft> | - p2f

Q{Z):D1D11(X)+pzDzl(x)
= p,DA{x)+ p: (131 /HD3(x)

=p, (D} (X)+ Dzi(x])20

From i)and ii),

Hh |Lh

Q=@ @= = -ahe D>

(2) Let m=
3. Q) =p: Dix)+p.DAX)+ D2 DA (X)
He%zLu H22%2L2.

i) H,=H,=1 - 1>Rt>1, 15Pz>7,

P Dz

— ph=Lips, p:=L,ps
— m=L.L,p;, p. zL.p,
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QD=p DA+ pPAX)+ ps DA (x)
2L1L2P3D11(X)+L2PSD21(X)+ PsD"i(X)
=ps[L; LDy (x)+ L. DA (x}+ DY (x)] =0

i) Hi=L,=1 > 1221>1, H,>Pe>1
Pz Ps
— Pz
pi=Lipe, a2 H,
Q3=p, Di(x)+ pDA(x)+ psD3 (x)

=L, pDi(x)+p.Di(x}+ (p2/ H2DA(x)

= o[ L. D4 (0+ D )+ - DAGx)] 20
- H,2P>1 1P,
D: DPa

D: P2 P2
— =t =1, =2=L,, e
D ? ps : H12p3

— pr2LoDs, D22 Lops, ps =i

H,
Q(3)=p, DL (x)+ p. DA (x)+ ps D)
= Lope DY (X)+ Lops D3 (x)+ p- DR (%)

2L, p DA () (Lopo / HOPAX) 4+ (. / HODR()

1
H

= py[ LaDh ()42 D2 (x)+— DA(x)] 0.

iv) Li=L,=1
H, >PL H,>P2>1
- 1 pz 21, 2 ps

- Pzz% Dszlpf
2

»
1

— P P
pzzHls pSEHle

Q¥ =p, DA (x)+p. DA {x)+p, D3 (x)
=>p, DY (x)+po/ (0 /HODA () (p: / Hy Ha)DR (%)

—pu (D) DAG)+pp g DI 0,

From i), ii}, iii), and iv),

th= E Lh

Q®=Q' 3= 2 P Dito 0.

(3) Suppose that equation{14) holds true

for m=k.

FERI) fERE HERTRY KN A 41
3 H:;:Lh .
Then Q* (k)= £ ——— Di{x)=0.
Q* (k) El -l h, 1{x)
Now, let’s examine what happens if
m= k+1,

kK+1 Hk.‘ L A
*k+1) =% ==t =k i
Q*(k+1) i§1 T i He Di(x)

X 4 L
=2 hm | h_

im] ;‘l_=11 Hh
s L mgiL,

i=1 H!n_:ll Hh

K
| G O

%=1 Ha

K
H hak+1

mi-, H

Di(x) + DY (x)

Difx) + h" D¥*i{x)

- L | (vt P 1
_Lk 1§1 HL;II Hh Dl(x)'i'nx;":l Hh Dk+11(x}

_ . 1
=L.Q ﬂﬂ‘*’m D*i(x)=0.

Since L, is positive, equation{l4) holds for
k+1. Thus, equation{14) holds for any posi-
tive integer greater than 1.///

Similar to Definition 2{Z2nd-degree stoc-
hastic dominance) which is an extension to
Definition 1{lst-degree stochastic domi-
nance), we can think of a second degree
stochastic-statistical dominance if the deci-
sion maker is relatively risk averse. So we
now extend Definition 3 to 2nd-degree
stochastic-statistical dominance as foll-
owWSs:

Definition 4. Let Fyx, and Fy; be the condi-
tional cumulative distribution functions for
two alternatives X and Y, respectively.
Then, alternative X is preferred to Y in the
sense of Ind-degree stochastic-statistical
dominance, denoted as X% =.Y, if Efu, X]
=>E[u, Y] for all u,€U; and vEV,.

Theorem 5. Given maximum occurrence
ratios and minimum occurrence ratios H,,

L, i=1, 2.+, m-1, which satisfy equa-
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tion{12), X& >,Y if E g—h'-ri Db(x) 20

where DM’s utility function is such that
u, <0, vV (x) <0, I Lo=I1%_,H,=1 and
Di(x)= jfm (Fyi{t)—Fx, {(t)]dt
= I X Di(tdt,

<Proof, Since the utility function u is a

composite function,

u(x)= ixu(X)
_ dfu(v) dv(x) ., du{v) dvi(x)
- (;lvz [ ]+ dV_. dx?
=u’(v) - [v(x) ]2+ o'y - Vv (x),

From equation(15}),

Df= [ u'vv' (x) [p:D}(x)+p.DA (x) +

+ P DM (x) Jdx

= v (x) {P DY x) + DA (R} + o +
PuD% (012 — [{u"y - (v ()2
Wy s VX)) [P Dy (x) +p. DR () + -+
+pn D% (x}]dx

= [ {u (VEPHU (v ) I

2(%) +pD%{X) + -+ +pu DB (x) ]dx,

Ifu.=0, vV(x)=0, u”.<90, v"{x)<0, and
Q2= 0, then E(u, F)=E{u, G) where

Q*=p: D% (x) +p. D% (x) + -+ +pu D% {x)
=ZMo - piDi(x),

The proof procedure is similar to the prev-

ious one by replacing Di(x) to D(x).///

5. Conclusion and Summary

In this paper, the expected utility prin-

ciple is employed as a decision criterion to
choose the “bese” one given the utility func-
tion of a decision maker and the probability
distribution of consequences where the uti-
lity function u.{v) is used instead of u. By
doing so, we can not only accurately desc-
ribe the decision maker’s risk attitude but
also prescribe how they should behave in
multiattribute decision making under
uncertainty. Therefore, the expected utility
theory is sound in both descriptive and
prescriptive sense.

The following assumptions are made in
developing stochastic-statistical domi-
nance. Neither the utility function of a
decision maker is axactly known but only
the functional form is known. Nor the
probability distribution of consequences for
each alternative is exactly known. Given
these assumptions, stochastic-statistical
dominance is developed using the measure
of relative risk aversion.

Therefore, if the decision maker is

conservative under certainty, his attitude

+ toward risk is relatively risk averse and if

we can rank and give relative bounds of the
prohabilities of the states of nature, stoch-
astic-statistical dominance can be used to
eliminate dominated aiternatives frem the
set of feasible alternatives in order to come
up with a set which includes a smaller
numnber of nondeminated alternatives. For
further research, we can extend stochastic
-statistical dominance developed here to
the situation when alternatives have mult-

iple attributes.
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