A Study on Wave Transformation Analysis using Higher-Order Finite Element

고차유한요소의 파랑변형해석에의 적용에 관한 소고

  • Jung, Tae-Hwa ;
  • Lee, Jong-In (Coastal and Harbor Research Division, Korea Institute of Construction and Technology) ;
  • Kim, Young-Taek (Coastal and Harbor Research Division, Korea Institute of Construction and Technology) ;
  • Ryu, Yong-Uk (Coastal and Harbor Research Division, Korea Institute of Construction and Technology)
  • Published : 2009.04.30

Abstract

The present study introduces a Legendre interpolation function which is capable of analyzing wave transformation effectively in a finite element method. A Lagrangian interpolation function has been mostly used for a finite element method with a higher-order interpolation function. Although this function has an advantage of giving an accurate result with less number of elements, simulation time increases. Calculation time can be reduced by mass lumping, whereas the accuracy of solution is lowered. In this study, we introduce a modified Lagrangian interpolation function, Legendre cardinal interpolation, which can reduce simulation time with keeping up favorable accuracy. Through various numerical simulations using a Boussinesq equations model, the superiority of the Legendre cardinal interpolation function to a Lagrangian interpolation function was shown.

유한요소법에 사용되어 효율적으로 파랑변형을 해석할 수 있는 (Legendre 보간 함수) 방법을 소개하였다. 고차의 보간함수를 사용하는 유한요소모형은 대부분이 Lagrangian 보간 함수를 사용한다. 이 경우, 적은 수의 요소를 사용하고도 정확한 결과를 얻을 수 있다는 장점이 있지만 결과를 얻기 위해 소요되는 시간이 증가한다는 단점이 있다. Mass lumping을 통하여 계산 시간을 절약할 수는 있지만 이 경우에는 해의 정확성이 떨어진다는 단점이 있어 정확도를 향상시키기 위하여 요소의 수를 증가시켜 다시 계산시간이 증대되는 문제가 생기게 된다. 본 연구에서 Lagrangian 보간 함수의 변형된 형태인 Legendre 보간함수에 수치적분을 사용하여 mass lumping을 수행한 것과 같이 대각 행렬을 만들어 시간 절약의 효과를 얻으면서도 정확도가 어느 정도 유지되는 방법을 소개하였다. Boussinesq 방정식을 이용한 다양한 수치 계산을 통하여 본 연구에서 제안하는 방법의 우수성을 검증하였다.

Keywords

References

  1. Eskilsson, C., Sherwin, S.J. (2003) An hp/spectral element model for efficient long-time integration of Boussinesq-type equations, Coastal Engineering Journal, Vol. 45, No. 2, pp. 295-320 https://doi.org/10.1142/S0578563403000762
  2. Eskilsson, C., Sherwin, S.J., Bergdahl, L. (2006) An unstructured spectral/hp element model for enhanced Boussinesqtype equations, Coastal Engineering, Vol. 53, pp. 947-963 https://doi.org/10.1016/j.coastaleng.2006.06.001
  3. Gabbi, M.F., Kirby, J.T. (1999) Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Engineering, Vol. 37, pp. 57-96 https://doi.org/10.1016/S0378-3839(99)00015-0
  4. Kato, S., Takagi, T., Kawahara, M. (1998) A finite element analysis of mach reflection by using the Boussinesq equation, International Journal for Numerical Methods in Fluids, Vol. 28, pp. 617-631 https://doi.org/10.1002/(SICI)1097-0363(19980930)28:4<617::AID-FLD736>3.0.CO;2-L
  5. Madsen, P.A., Murray, I.R. and Sorensen, O.R. (1991) A new form of the Boussinesq equations with improved linear dispersion characteristics, Coastal Engineering, Vol. 15, pp. 371-388 https://doi.org/10.1016/0378-3839(91)90017-B
  6. Nwogu, O. (1993) Alternative form of Boussinesq equations for nearshore wave propagation, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 119, pp. 618-638 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  7. Panchang, V., Chen, W., Xu, B., Schlenker, K., Demirbilek, Z., Okihiro, M. (2000) Exterior bathymetric effects in elliptic harbor wave models, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 126, pp. 71-78 https://doi.org/10.1061/(ASCE)0733-950X(2000)126:2(71)
  8. Park, W.S., Chun, I.S., Jeoung, W.M. (1994) Infinite element for the analysis of harbor resonances, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 6, pp. 139-149
  9. Patera, A.T. (1984) A spectral element method for fluid dynamics: Laminar flow in a channel expansion, Journal of Computational Physics, Vol. 54, pp. 468-488 https://doi.org/10.1016/0021-9991(84)90128-1
  10. Peregrine, D.H. (1967) Long waves on a beach, J. Fluid Mech., No. 27, pp. 815-827 https://doi.org/10.1017/S0022112067002605
  11. Sanz-Serna, J.M. and Christie, I. (1981) Petrov-Galerkin methods for nonlinear dispersive waves. Journal of Computational Physics, Vol. 39, pp. 94-102 https://doi.org/10.1016/0021-9991(81)90138-8
  12. Walkley, M. and Berzins, M. (1999) A finite element method for the one-dimensional extended Boussinesq equations, International Journal for Numerical Methods in Fluids, Vol. 29, pp. 143-157 https://doi.org/10.1002/(SICI)1097-0363(19990130)29:2<143::AID-FLD779>3.0.CO;2-5
  13. Walkley, M. and Berzins, M. (2002) A finite element method for two-dimensional extended Boussinesq equation, International Journal for Numerical Methods in Fluids, Vol. 39, pp. 865-885 https://doi.org/10.1002/fld.349
  14. Witting, J. M. (1984) A unified model for the evolution of nonlinear water waves, Journal of computational physics, Vol. 56, No. 2, pp. 203-239 https://doi.org/10.1016/0021-9991(84)90092-5
  15. Woo, S.-B. and Liu, P.L.-F. (2001) A Petrov-Galerkin finite element model for one-dimensional fully non-linear and weakly dispersive wave propagation, International Journal for Numerical Methods in Fluids, Vol. 37, pp. 541-575 https://doi.org/10.1002/fld.186
  16. Woo, S.-B. and Liu, P.L.-F. (2004a) Finite-element model for modified Boussinesq equations. I: Model development, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 130, pp. 1-16 https://doi.org/10.1061/(ASCE)0733-950X(2004)130:1(1)
  17. Woo, S.-B. and Liu, P.L.-F. (2004b) Finite-element model for modified Boussinesq equations. II: Applications to nonlinear harbor oscillations, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 130, pp. 17-28 https://doi.org/10.1061/(ASCE)0733-950X(2004)130:1(17)
  18. Tsay, T., Liu, P.L.-F. (1983) A finite element model for wave refraction and diffraction, Journal of Fluid Mechanics, Vol. 72, pp. 373-384