• Title/Summary/Keyword: Cardiac segmentation

Search Result 30, Processing Time 0.017 seconds

Right Ventricular Mass Quantification Using Cardiac CT and a Semiautomatic Three-Dimensional Hybrid Segmentation Approach: A Pilot Study

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.901-911
    • /
    • 2021
  • Objective: To evaluate the technical applicability of a semiautomatic three-dimensional (3D) hybrid CT segmentation method for the quantification of right ventricular mass in patients with cardiovascular disease. Materials and Methods: Cardiac CT (270 cardiac phases) was used to quantify right ventricular mass using a semiautomatic 3D hybrid segmentation method in 195 patients with cardiovascular disease. Data from 270 cardiac phases were divided into subgroups based on the extent of the segmentation error (no error; ≤ 10% error; > 10% error [technical failure]), defined as discontinuous areas in the right ventricular myocardium. The reproducibility of the right ventricular mass quantification was assessed. In patients with no error or < 10% error, the right ventricular mass was compared and correlated between paired end-systolic and end-diastolic data. The error rate and right ventricular mass were compared based on right ventricular hypertrophy groups. Results: The quantification of right ventricular mass was technically applicable in 96.3% (260/270) of CT data, with no error in 54.4% (147/270) and ≤ 10% error in 41.9% (113/270) of cases. Technical failure was observed in 3.7% (10/270) of cases. The reproducibility of the quantification was high (intraclass correlation coefficient = 0.999, p < 0.001). The indexed mass was significantly greater at end-systole than at end-diastole (45.9 ± 22.1 g/m2 vs. 39.7 ± 20.2 g/m2, p < 0.001), and paired values were highly correlated (r = 0.96, p < 0.001). Fewer errors were observed in severe right ventricular hypertrophy and at the end-systolic phase. The indexed right ventricular mass was significantly higher in severe right ventricular hypertrophy (p < 0.02), except in the comparison of the end-diastolic data between no hypertrophy and mild hypertrophy groups (p > 0.1). Conclusion: CT quantification of right ventricular mass using a semiautomatic 3D hybrid segmentation is technically applicable with high reproducibility in most patients with cardiovascular disease.

Semiautomatic Three-Dimensional Threshold-Based Cardiac Computed Tomography Ventricular Volumetry in Repaired Tetralogy of Fallot: Comparison with Cardiac Magnetic Resonance Imaging

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.102-113
    • /
    • 2019
  • Objective: To assess the accuracy and potential bias of computed tomography (CT) ventricular volumetry using semiautomatic three-dimensional (3D) threshold-based segmentation in repaired tetralogy of Fallot, and to compare them to those of two-dimensional (2D) magnetic resonance imaging (MRI). Materials and Methods: This retrospective study evaluated 32 patients with repaired tetralogy of Fallot who had undergone both cardiac CT and MRI within 3 years. For ventricular volumetry, semiautomatic 3D threshold-based segmentation was used in CT, while a manual simplified contouring 2D method was used in MRI. The indexed ventricular volumes were compared between CT and MRI. The indexed ventricular stroke volumes were compared with the indexed arterial stroke volumes measured using phase-contrast MRI. The mean differences and degrees of agreement in the indexed ventricular and stroke volumes were evaluated using Bland-Altman analysis. Results: The indexed end-systolic (ES) volumes showed no significant difference between CT and MRI (p > 0.05), while the indexed end-diastolic (ED) volumes were significantly larger on CT than on MRI (93.6 ± 17.5 mL/m2 vs. 87.3 ± 15.5 mL/m2 for the left ventricle [p < 0.001] and 177.2 ± 39.5 mL/m2 vs. 161.7 ± 33.1 mL/m2 for the right ventricle [p < 0.001], respectively). The mean differences between CT and MRI were smaller for the indexed ES volumes (2.0-2.5 mL/m2) than for the indexed ED volumes (6.3-15.5 mL/m2). CT overestimated the stroke volumes by 14-16%. With phase-contrast MRI as a reference, CT (7.2-14.3 mL/m2) showed greater mean differences in the indexed stroke volumes than did MRI (0.8-3.3 mL/m2; p < 0.005). Conclusion: Compared to 2D MRI, CT ventricular volumetry using semiautomatic 3D threshold-based segmentation provides comparable ES volumes, but overestimates the ED and stroke volumes in patients with repaired tetralogy of Fallot.

Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning

  • Hyun Jung Koo;June-Goo Lee;Ji Yeon Ko;Gaeun Lee;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.660-669
    • /
    • 2020
  • Objective: To evaluate the accuracy of a deep learning-based automated segmentation of the left ventricle (LV) myocardium using cardiac CT. Materials and Methods: To develop a fully automated algorithm, 100 subjects with coronary artery disease were randomly selected as a development set (50 training / 20 validation / 30 internal test). An experienced cardiac radiologist generated the manual segmentation of the development set. The trained model was evaluated using 1000 validation set generated by an experienced technician. Visual assessment was performed to compare the manual and automatic segmentations. In a quantitative analysis, sensitivity and specificity were calculated according to the number of pixels where two three-dimensional masks of the manual and deep learning segmentations overlapped. Similarity indices, such as the Dice similarity coefficient (DSC), were used to evaluate the margin of each segmented masks. Results: The sensitivity and specificity of automated segmentation for each segment (1-16 segments) were high (85.5-100.0%). The DSC was 88.3 ± 6.2%. Among randomly selected 100 cases, all manual segmentation and deep learning masks for visual analysis were classified as very accurate to mostly accurate and there were no inaccurate cases (manual vs. deep learning: very accurate, 31 vs. 53; accurate, 64 vs. 39; mostly accurate, 15 vs. 8). The number of very accurate cases for deep learning masks was greater than that for manually segmented masks. Conclusion: We present deep learning-based automatic segmentation of the LV myocardium and the results are comparable to manual segmentation data with high sensitivity, specificity, and high similarity scores.

Performance Improvement of Cardiac Disorder Classification Based on Automatic Segmentation and Extreme Learning Machine (자동 분할과 ELM을 이용한 심장질환 분류 성능 개선)

  • Kwak, Chul;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.32-43
    • /
    • 2009
  • In this paper, we improve the performance of cardiac disorder classification by continuous heart sound signals using automatic segmentation and extreme learning machine (ELM). The accuracy of the conventional cardiac disorder classification systems degrades because murmurs and click sounds contained in the abnormal heart sound signals cause incorrect or missing starting points of the first (S1) and the second heart pulses (S2) in the automatic segmentation stage, In order to reduce the performance degradation due to segmentation errors, we find the positions of the S1 and S2 pulses, modify them using the time difference of S1 or S2, and extract a single period of heart sound signals. We then obtain a feature vector consisting of the mel-scaled filter bank energy coefficients and the envelope of uniform-sized sub-segments from the single-period heart sound signals. To classify the heart disorders, we use ELM with a single hidden layer. In cardiac disorder classification experiments with 9 cardiac disorder categories, the proposed method shows the classification accuracy of 81.6% and achieves the highest classification accuracy among ELM, multi-layer perceptron (MLP), support vector machine (SVM), and hidden Markov model (HMM).

Automatic Heart Segmentation in a Cardiac Ultrasound Image (초음파 심장 영상에서 자동 심장 분할 방법)

  • Lee, Jae-Jun;Kim, Dong-Sung
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.418-426
    • /
    • 2006
  • This paper proposes a robust and efficient segmentation method for a cardiac ultrasound image taken from a probe inserted into the heart in surgery. The method consists of three steps: initial boundary extraction, whole boundary modification using confidence competition, and local boundary modification using the rolling spoke method. Firstly, the initial boundary is extracted with threshold regions along the global spokes emitted from the center of an ultrasound probe. Secondly, high confidence boundary edges are detected along the global spokes by competing among initial boundary candidate and new candidates achieved by edge and appearance information. finally, the boundary is modified by rolling local spokes along concave regions that are difficult to extract using the global spokes. The proposed method produces promising segmentation results for the ultrasound cardiac images acquired during surgery.

Evaluating Usefulness of Deep Learning Based Left Ventricle Segmentation in Cardiac Gated Blood Pool Scan (게이트심장혈액풀검사에서 딥러닝 기반 좌심실 영역 분할방법의 유용성 평가)

  • Oh, Joo-Young;Jeong, Eui-Hwan;Lee, Joo-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.151-158
    • /
    • 2022
  • The Cardiac Gated Blood Pool (GBP) scintigram, a nuclear medicine imaging, calculates the left ventricular Ejection Fraction (EF) by segmenting the left ventricle from the heart. However, in order to accurately segment the substructure of the heart, specialized knowledge of cardiac anatomy is required, and depending on the expert's processing, there may be a problem in which the left ventricular EF is calculated differently. In this study, using the DeepLabV3 architecture, GBP images were trained on 93 training data with a ResNet-50 backbone. Afterwards, the trained model was applied to 23 separate test sets of GBP to evaluate the reproducibility of the region of interest and left ventricular EF. Pixel accuracy, dice coefficient, and IoU for the region of interest were 99.32±0.20, 94.65±1.45, 89.89±2.62(%) at the diastolic phase, and 99.26±0.34, 90.16±4.19, and 82.33±6.69(%) at the systolic phase, respectively. Left ventricular EF was calculated to be an average of 60.37±7.32% in the ROI set by humans and 58.68±7.22% in the ROI set by the deep learning segmentation model. (p<0.05) The automated segmentation method using deep learning presented in this study similarly predicts the average human-set ROI and left ventricular EF when a random GBP image is an input. If the automatic segmentation method is developed and applied to the functional examination method that needs to set ROI in the field of cardiac scintigram in nuclear medicine in the future, it is expected to greatly contribute to improving the efficiency and accuracy of processing and analysis by nuclear medicine specialists.

Patient-Specific Mapping between Myocardium and Coronary Arteries using Myocardial Thickness Variation

  • Dongjin Han
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.187-194
    • /
    • 2024
  • For precise cardiac diagnostics and treatment, we introduce a novel method for patient-specific mapping between myocardial and coronary anatomy, leveraging local variations in myocardial thickness. This complex system integrates and automates multiple sophisticated components, including left ventricle segmentation, myocardium segmentation, long-axis estimation, coronary artery tracking, and advanced geodesic Voronoi distance mapping. It meticulously accounts for variations in myocardial thickness and precisely delineates the boundaries between coronary territories according to the conventional 17-segment myocardial model. Each phase of the system provides a step-by-step approach to automate coronary artery mapping onto the myocardium. This innovative method promises to transform cardiac imaging by offering highly precise, automated, and patient-specific analyses, potentially enhancing the accuracy of diagnoses and the effectiveness of therapeutic interventions for various cardiac conditions.

Left Ventricle Segmentation Algorithm through Radial Threshold Determination on Cardiac MRI (심장 자기공명영상에서 방사형 임계치 결정법을 통한 좌심실 분할 알고리즘)

  • Moon, Chang-Bae;Lee, Hae-Yeoun;Kim, Byeong-Man;Shin, Yoon-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.825-835
    • /
    • 2009
  • The advance in medical technology has decreased death rates from diseases such as tubercle, pneumonia, malnutrition, and hepatitis. However, death rates from cardiac diseases are still increasing. To prevent cardiac diseases and quantify cardiac function, magnetic resonance imaging not harmful to the body is used for calculating blood volumes and ejection fraction(EF) on routine clinics. In this paper, automatic left ventricle(LV) segmentation is presented to segment LV and calculate blood volume and EF, which can replace labor intensive and time consuming manual contouring. Radial threshold determination is designed to segment LV and blood volume and EF are calculated. Especially, basal slices which were difficult to segment in previous researches are segmented automatically almost without user intervention. On short axis cardiac MRI of 36 subjects, the presented algorithm is compared with manual contouring and General Electronic MASS software. The results show that the presented algorithm performs in similar to the manual contouring and outperforms the MASS software in accuracy.

Automatic Left Ventricle Segmentation by Edge Classification and Region Growing on Cardiac MRI (심장 자기공명영상의 에지 분류 및 영역 확장 기법을 통한 자동 좌심실 분할 알고리즘)

  • Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.507-516
    • /
    • 2008
  • Cardiac disease is the leading cause of death in the world. Quantification of cardiac function is performed by manually calculating blood volume and ejection fraction in routine clinical practice, but it requires high computational costs. In this study, an automatic left ventricle (LV) segmentation algorithm using short-axis cine cardiac MRI is presented. We compensate coil sensitivity of magnitude images depending on coil location, classify edge information after extracting edges, and segment LV by applying region-growing segmentation. We design a weighting function for intensity signal and calculate a blood volume of LV considering partial voxel effects. Using cardiac cine SSFP of 38 subjects with Cornell University IRB approval, we compared our algorithm to manual contour tracing and MASS software. Without partial volume effects, we achieved segmentation accuracy of $3.3mL{\pm}5.8$ (standard deviation) and $3.2mL{\pm}4.3$ in diastolic and systolic phases, respectively. With partial volume effects, the accuracy was $19.1mL{\pm}8.8$ and $10.3mL{\pm}6.1$ in diastolic and systolic phases, respectively. Also in ejection fraction, the accuracy was $-1.3%{\pm}2.6$ and $-2.1%{\pm}2.4$ without and with partial volume effects, respectively. Results support that the proposed algorithm is exact and useful for clinical practice.

Automatic Left Ventricle Segmentation using Split Energy Function including Orientation Term from CTA

  • Kang, Ho Chul
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • In this paper, we propose an automatic left ventricle segmentation method in computed tomography angiography (CTA) using separating energy function. First, we smooth the images by applying anisotropic diffusion filter to remove noise. Secondly, the volume of interest (VOI) is detected by using k-means clustering. Thirdly, we divide the left and right heart with split energy function. Finally, we extract only left ventricle from left and right heart with optimizing cost function including orientation term.