Automatic Heart Segmentation in a Cardiac Ultrasound Image

초음파 심장 영상에서 자동 심장 분할 방법

  • Published : 2006.04.01

Abstract

This paper proposes a robust and efficient segmentation method for a cardiac ultrasound image taken from a probe inserted into the heart in surgery. The method consists of three steps: initial boundary extraction, whole boundary modification using confidence competition, and local boundary modification using the rolling spoke method. Firstly, the initial boundary is extracted with threshold regions along the global spokes emitted from the center of an ultrasound probe. Secondly, high confidence boundary edges are detected along the global spokes by competing among initial boundary candidate and new candidates achieved by edge and appearance information. finally, the boundary is modified by rolling local spokes along concave regions that are difficult to extract using the global spokes. The proposed method produces promising segmentation results for the ultrasound cardiac images acquired during surgery.

본 논문에서는 수술 도중에 심장내부로 삽입한 초음파 탐침을 통해 획득된 초음파 심장영상에서 강인하게 심장 영역을 고속 자동 분할하는 방법을 제안한다 제안한 방법은 심장 초기 경계 추출, 신뢰도 경쟁을 통한 전체 경계 검출, 회전 국부 방사선 기법을 이용한 국부 경계 보완으로 세 단계로 구성된다. 첫째, 초음파 탐침의 중심에서 방사선을 만들어 각 방사선에서 밝기값 기반 임계값 기법으로 얻어진 심장외부 영역을 이용하여 대략적인 초기 심장영역의 경계를 추출한다. 둘째, 각각의 방사선에서 임계치로 추출된 초기 심장영역의 위치를 포함하여 경계와 영역정보를 이용해 추출된 새로운 후보들과 신뢰도의 경쟁을 수행하여 높은 신뢰성을 가진 심장 경계를 검출한다. 셋째, 방사선 기법으로 경계획득이 어려운 심장의 오목한 영역에서 경계를 따라 회전하면서 국부적으로 방사선 조사법을 적용하여 경계를 보완한다. 제안된 방법은 실제 환자의 심장 수술 도중에 얻어진 초음파 영상에 적용되어 고무적인 결과를 획득했다.

Keywords

References

  1. D. Duncan and N. Ayache, 'Medical Image Analysis: Progress over Two Decades and the Challenges Ahead,' IEEE Trans. on the Pattern Analysis and Machine Intelligence, Vol. 22, No.1, pp. 85-106, January 2000 https://doi.org/10.1109/34.824822
  2. R. Adams and L. Bischof, 'Seeded rgion growing,' IEEE Trans. on the and Machine Intelligence, Vol. 641-647, June 1994 https://doi.org/10.1109/34.295913
  3. T. Kapur, W. Grimson, W. Wells. III, and R. Kinis, 'Segmentation of brain tissue from magnetic resonance images,' Medical Image Analysis, Vol. 1, No.2, pp, 109-127, 1996 https://doi.org/10.1016/S1361-8415(96)80008-9
  4. M. Kass, A. Witkin, and D. Terzopoulos, 'Snakes: active contour models,' International Journal of Computer Vision, Vol. 1, No. 3, pp. 312-331, 1998 https://doi.org/10.1007/BF00133570
  5. L. Cohen and I. Cohen, 'Finite-element methods for active contour models and balloons for 2-d and 3-d images,' IEEE Trans. on the Pattern Analysis and Machine Intelligence, Vol. 15, No. 11, pp. 1131-1147, November 1993 https://doi.org/10.1109/34.244675
  6. V. Caselles, R. Kimmel, and G. Sapiro, 'On geodesic active contours,' International Journal of Computer Vision, Vol. 22, No. 1, pp. 61-69, 1997 https://doi.org/10.1023/A:1007979827043
  7. A. Chakraborty, L. Staib, and J. Duncan, 'Deformable boundary finding in medical images by integrating gradient and region information,' IEEE Trans. on medical imaging, Vol. 15, No. 6, pp. 859-870, 1996 https://doi.org/10.1109/42.544503
  8. C. Chu and J. K. Aggarwal, 'The integration of image segmentation maps using region and edge information,' IEEE Trans. on the Pattern Analysis and Machine Intelligence, Vol. 15, No. 12, pp. 1241-1252, 1993 https://doi.org/10.1109/34.250843
  9. S. Pizer, G. Gerig, S. Joshi, and S. Aylward, 'Multiscale medial shape-based analysis of image objects,' Proc. IEEE, Vol. 91, No. 10, pp, 1670-1679, October. 2003 https://doi.org/10.1109/JPROC.2003.817876
  10. M. Leventon, E. Grimson, and O. Faugeras, 'Statistical shape influence in geodesic active contours,' in Proc. CVPR 2000, pp. 316-323, 2000 https://doi.org/10.1109/CVPR.2000.855835
  11. S. Joshi, 'Large deformation diffeomorphisms and Gaussian random fields for statistical characterization of brain submanifolds,' Ph.D. thesis, Washington Univ., St. Louis, MO, 1997
  12. K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens, 'A unifying framework for partial volume segmentation of brain MR images,' IEEE Trans. Medical Imaging, Vol. 22, No. 1, pp. 105-119, January. 2003 https://doi.org/10.1109/TMI.2002.806587
  13. T. Cootes and C. Taylor, 'Statistical models of appearance for medical image analysis and computer vision,' Proceeding SPIE(Medical Imaging 2001: Image Processing, M. Sonka, K.M. Hanson, Eds.), Vol 4322, pp. 236-248, July. 2001 https://doi.org/10.1117/12.431093
  14. A Hill, A Thornham, and C. Taylor, 'Modelbased interpretation of 3-D medical images,' in Proc. 4th Br. Machine Vision Conference, pp. 339-348, September. 1993
  15. Kelemen, G. Szekely, and G. Gerig, 'Elastic model-based segmentation of 3-D neuroradiological data sets,' IEEE Trans. on Medical Imaging, Vol. 18, No. 10, pp. 828-839, October 1997 https://doi.org/10.1109/42.811260
  16. Y. Wang and L. H. Staib, 'Integrated approaches to nonrigid registration in medical images,' in proc. IEEE WACV 1998, pp. 102-108, October. 1998 https://doi.org/10.1109/ACV.1998.732865
  17. D. Freedman, R. J. Radkef, T. Zhang, Y. Jeong, D. Michael Lovelock, George T. Y. Chen, 'Model-based segmentation of medical imagery by matching distributions,' IEEE Trans. on Medical Imaging, Vol. 24, No. 3, pp. 281-292, March 2005 https://doi.org/10.1109/TMI.2004.841228
  18. E.A. Ashton and K.J. Parker, 'Multiple resolution Bayesian segmentation of unltrasound images,' Ultrasonic Imaging, Vol. 17, No.2, pp. 291-304, 1995 https://doi.org/10.1177/016173469501700403
  19. G.Xiao, J.M.Brady, and J.A.Noble, and Y.Zhang, 'Contrast enhancement and segmentation of ultrasound images-a statistical method,' SPIE Med. Imaging Image processing, pp. 1116-1125, 2000 https://doi.org/10.1117/12.387616
  20. D.Boukerroui, A.Baskurt, and J.A.Noble, and O.Basset, 'Segmentation of ultrasound images-multiresolution 2D and 3D algorithm based on global and local staticstics,' Pattern recognition letters, Vol. 24, pp. 779-790, 2003 https://doi.org/10.1016/S0167-8655(02)00181-2
  21. A. Salvador, Y.Maingourd, S. Fu, and J-F. Lerallut, 'Optimization of An Edge Detection Algorightm For Echocardiographic Images,' Conference of the IEEE EMBS, pp. 1118-1191, 2003 https://doi.org/10.1109/IEMBS.2003.1279462
  22. R. C. Gonzalez and R. E. Woods, 'Digital-Image Processing,' Addison Wesley, 1993
  23. J. Canny, 'A Computational Approach to Edge Detection,' IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 8, No.6, pp. 679-698, 1986 https://doi.org/10.1109/TPAMI.1986.4767851
  24. P. Shirley, 'Fundamentals of Computer Graphics,' AK Peters, 2003
  25. 이원로, '임상 심장학', 고려의학, 2003