• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.025 seconds

Molecular Dynamics Simulation for the Mechanical Properties of CNT/Polymer Nanocomposites (분자동역학 시뮬레이션을 이용한 나노튜브/고분자 나노복합재의 물성 해석)

  • Yang, Seung-Hwa;Cho, Maeg-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.237-244
    • /
    • 2007
  • In order to obtain mechanical properties of CNT/Polymer nano-composites, molecular dynamics simulation is performed. Overall system was modeled as a flexible unit cell in which carbon nanotubes are embedded into a polyethylene matrix for N $\sigma$ T ensemble simulation. COMPASS force field was chosen to describe inter and intra molecular potential and bulk effect was achieved via periodic boundary conditions. In CNT-polymer interface, only Lennard-Jones non-bond potential was considered. Using Parrinello-Rahman fluctuation method, mechanical properties of orthotropic nano-composites under various temperatures were successfully obtained. Also, we investigated thermal behavior of the short CNT reinforced nanocomposites system with predicting glass transition temperature.

The Study on the Application of CNT Particle in High-Precision Magnetic Abrasive Polishing Process (초정밀 자기연마 공정에 탄소나노튜브 입자의 적용에 관한 연구)

  • Kwak, Tae-Kyung;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.274-279
    • /
    • 2011
  • In this study, new abrasives that were composed of iron powder and carbon nanotube (CNT) particle were attempted to be abrasives for magnetic abrasive polishing. Because the CNT particles itself are very small ones with high hardness and magnetic strength, these properties are effective for magnetic abrasive polishing of nonmagnetic materials. As an experimental result for evaluating the machining characteristics in magnetic abrasive polishing, the CNT particles showed better performance than the conventional abrasives such as Fe and CBN powder.

Electrochemical Evaluation of Cadmium and Lead by Thiolated Carbon Nanotube Electrodes (티올화된 탄소나노튜브 전극을 이용한 카드뮴과 납의 전기화학적 분석)

  • Yang, Jongwon;Kim, Lae-Hyun;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.551-557
    • /
    • 2013
  • In the present study, pristine carbon nanotube (p-CNT) and thiolated carbon naotube (t-CNT) electrodes were investigated to improve their detectabilities for cadmium (Cd) and lead (Pb). In addition, we evaluate which reaction mechanism is used when the electrolyte contains both Cd and Pb metals. Square wave stripping was employed for analyzing the sensitivity for the metals. A frequency of 30 Hz, a deposition potential of -1.2 V vs. Ag/AgCl and a deposition time of 300 s were used as optimal SWSV parameters. t-CNT electrodes show the better sensitivity for both Cd and Pb metals than that of p-CNT electrodes. In case of Cd, sensitivities of p-CNT and t-CNT electrodes were $3.1{\mu}A/{\mu}M$ and $4.6{\mu}A/{\mu}M$, respectively, while the sensitivities for Pb were $6.5{\mu}A/{\mu}M$ (p-CNT) and $9.9{\mu}A/{\mu}M$ (t-CNT), respectively. The better sensitivity of p-CNT electrodes is due to the enhancement in the reaction rate of metal ions that are facilitated by thiol groups attached on the surface of CNT. When sensitivity was measured for the detection of Cd and Pb metals present simultaneously in the electrolyte, Pb indicates better sensitivity than Cd irrespective of electrode types. It is ascribed to the low standard electrode potential of Pb, which then promotes the possibility of oxidation reaction of the Pb metal ions. In turn, the Pb metal ions are deposited on the electrode surface faster than that of Cd metal ions and cover the electrode surface during deposition step, and thus Pb metals that cover the large portion of the surface are more easily stripped than that of Cd metals during stripping step.

Mechanical Properties of Carbon Nanotube/Cu Nanocomposites Produced by Powder Equal Channel Angular Pressing (분말 ECAP 공정으로 제조된 탄소나노튜브/Cu 나노복합재료의 기계적 성질)

  • Yoon, Seung-Chae;Jeong, Young-Gi;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.360-365
    • /
    • 2006
  • Carbon nanotubes (CNTs) have been the subject of intensive studies for applications in the fields of nano technologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their exceptionally small diameters (${\appros}\;several\;nm$) as well as their high Young's modulus (${\appros}1\;TPa$), tensile strength (${\appros}\;200\;GPa$) and high elongation (10-30%) in addition to a high chemical stability, CNTs are attractive reinforcement materials for light weight and high strength metal matrix composites. Although extensive researches have been performed on the electrical, mechanical and functional properties of CNTs, there are not many successful results on the mechanical properties of CNT dispersed nanocomposites. In this paper, we applied equal channel angular pressing for consolidation of CNT/Cu powder mixtures. We also investigated the hardness and microstructures of CNT/Cu nanocomposites used experimental for metal matrix composites.

Development of flat type back-lamp using carbon nano tubes grown on glass substrate (유리기판 위에 성장된 카본나노튜브를 이용한 고휘도 램프 특성)

  • Lee, Yang-Doo;Lee, Duck-Jung;Park, Jeung-Hoon;Yoo, Jae-Eun;Lee, Yun-Hi;Jang, Jin;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.89-92
    • /
    • 2002
  • Carbon nano tubes(CNTs) have been reported as field emission source because has a sharp tip, a high aspect tip, high chemical stability, high mechanical strength and low work function properties. In this study, we fabricated successfully the back-lamp of the I-inch flat type using CNTs, which was grown directly on cathode substrate of sodalime glass at low temperature. The brightness of CNT back-lamp is measured to $14 Kcd/m^{2}$ at $2000V_{dc}$ in spacing of $500{\mu}m$. And, the emission properties of packaged CNT back-lamp was analyzed as function of applying voltage and times.

  • PDF

Effect of Ammonia Gas on Growth of Chemically Vapor-Deposited Carbon Nanotubes (화학기상증착법에 의한 탄소나노튜브의 성장에 미치는 암모니아 가스의 영향)

  • Lee, Dong-Gu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.418-423
    • /
    • 2010
  • Carbon nanotubes (CNTs) were synthesized by Fe-catalytic chemical vapor deposition (CVD) method about $800^{\circ}C$. The influence of process parameters such as pretreatment conditions, gas flow ratio, processing time, etc on the growth of CNTs was investigated by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Ammonia was added to acetylene source gas before and during the CNT growth. Different types of CNTs formed depending upon the processing condition. It was found that ammonia prevented amorphous carbons from adsorbing to the outer wall of CNT, resulting in purification of CNTs during CNT growth.

Molecular Dynamics of Carbon Nanotubes Deposited on a Silicon Surface via Collision: Temperature Dependence

  • Saha, Leton C.;Mian, Shabeer A.;Kim, Hyo-Jeong;Saha, Joyanta K.;Matin, Mohammad A.;Jang, Joon-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.515-518
    • /
    • 2011
  • We investigated how temperature influences the structural and energetic dynamics of carbon nanotubes (CNTs) undergoing a high-speed impact with a Si (110) surface. By performing molecular dynamics simulations in the temperature range of 100 - 300 K, we found that a low temperature CNT ends up with a higher vibrational energy after collision than a high temperature CNT. The vibrational temperature of CNT increases by increasing the surface temperature. Overall, the structural and energy relaxation of low temperature CNTs are faster than those of high temperature CNTs.

Ultrafine Grained Bulk Al Matrix Carbon Nanotube Composites Processed by High Pressure Torsion (고압비틀림 성형 공정에 의한 Al 기지 CNT 복합재료의 초미세결정 벌크화)

  • Joo,, S.H.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.423-428
    • /
    • 2010
  • Carbon nanotubes(CNTs) are expected to be ideal reinforcements of metal matrix composite materials used in aircraft and sports industries due to their high strength and low density. In this study, a high pressure torsion(HPT) process at an elevated temperature(473K) was employed to achieve both powder consolidation and grain refinement of aluminummatrix nanocomposites reinforced by 5vol% CNTs. CNT/Al nanocomposite powders were fabricated using a novel molecular-level mixing process to enhance the interface bonding between the CNTs and metal matrix before the HPT process. The HPT processed disks were composed of mostly equilibrium grain boundaries. The CNT-reinforced ultrafine grained microstructural features resulted in high strength and good ductility.

Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs

  • Lee, Hae-Hyoung;Shin, Ueon-Sang;Jin, Guang-Zhen;Kim, Hae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.157-161
    • /
    • 2011
  • For the fabrication of multifunctional biopolymer nanocomposites in the combination of carbon nanotubes (CNTs), recently increasing attention has been paid to an effective homogenization of CNTs within polymer matrices and a fine tuning of the concentration. We developed an efficient method to produce homogeneous CNT-polycaprolactone nanocomposites with various and controllable CNT concentrations using an ionically-modified multi-walled CNT, MWCNT-Cl. The modified MWCNTs could be homogeneously dispersed in tetrahydrofuran (THF). Polycaprolactone (PCL) as a biodegradable and biocompatible polymer was smoothly dissolved in the homogeneous MWCNT-Cl/THF solution without agglomeration of MWCNT-Cl. The physicochemical and mechanical properties of the resultant nanocomposites were examined and the biological usefulness was briefly assessed.

The Properties of Cement Paste Mixed with Carbon Nanotubes Dispersion Solution (탄소나노튜브 분산용액을 혼입한 시멘트 페이스트의 특성 변화)

  • Park, Sung-Hwan;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.201-202
    • /
    • 2021
  • Currently, the domestic construction industry is trying to expand the range of building materials due to overload of growth. In particular, several studies are being conducted to make up for the weakness of building materials by solving problems such as reduction of tensile strength and brittle behavior of concrete. Among them, efforts to maximize the use of carbon nanotubes (CNT) that has excellent mechanical and electrical conductivity properties are continuing. However, CNT is hydrophobic and have a strong Van der Waals force between particles, making it difficult to obtain an effective dispersion state. Therefore, in this study, various kinds of surfactants like DOC (Sodium Deoxycholate), PVP (Polyvinylpyrrolidone), and PCE (Polycarboxylate ester) were added to improve the dispersibility of CNT, and analyzed the changes in the properties of the cement paste mixed with them.

  • PDF