Electrochemical Evaluation of Cadmium and Lead by Thiolated Carbon Nanotube Electrodes

티올화된 탄소나노튜브 전극을 이용한 카드뮴과 납의 전기화학적 분석

  • Yang, Jongwon (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kim, Lae-Hyun (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kwon, Yongchai (Graduate School of Energy and Environment, Seoul National University of Science and Technology)
  • 양종원 (서울과학기술대학교 에너지환경대학원) ;
  • 김래현 (서울과학기술대학교 에너지환경대학원) ;
  • 권용재 (서울과학기술대학교 에너지환경대학원)
  • Published : 2013.10.31

Abstract

In the present study, pristine carbon nanotube (p-CNT) and thiolated carbon naotube (t-CNT) electrodes were investigated to improve their detectabilities for cadmium (Cd) and lead (Pb). In addition, we evaluate which reaction mechanism is used when the electrolyte contains both Cd and Pb metals. Square wave stripping was employed for analyzing the sensitivity for the metals. A frequency of 30 Hz, a deposition potential of -1.2 V vs. Ag/AgCl and a deposition time of 300 s were used as optimal SWSV parameters. t-CNT electrodes show the better sensitivity for both Cd and Pb metals than that of p-CNT electrodes. In case of Cd, sensitivities of p-CNT and t-CNT electrodes were $3.1{\mu}A/{\mu}M$ and $4.6{\mu}A/{\mu}M$, respectively, while the sensitivities for Pb were $6.5{\mu}A/{\mu}M$ (p-CNT) and $9.9{\mu}A/{\mu}M$ (t-CNT), respectively. The better sensitivity of p-CNT electrodes is due to the enhancement in the reaction rate of metal ions that are facilitated by thiol groups attached on the surface of CNT. When sensitivity was measured for the detection of Cd and Pb metals present simultaneously in the electrolyte, Pb indicates better sensitivity than Cd irrespective of electrode types. It is ascribed to the low standard electrode potential of Pb, which then promotes the possibility of oxidation reaction of the Pb metal ions. In turn, the Pb metal ions are deposited on the electrode surface faster than that of Cd metal ions and cover the electrode surface during deposition step, and thus Pb metals that cover the large portion of the surface are more easily stripped than that of Cd metals during stripping step.

본 연구에서는 환경오염을 발생시키는 위험한 중금속 물질들인 카드뮴과 납의 검출 능력을 향상시키기 위해, 순수한 탄소나노튜브(p-CNT) 전극 및 티올화된 탄소나노튜브(t-CNT) 전극을 이용하여 카드뮴과 납 금속의 민감도를 평가하였다. 또한, 두 금속이 동시에 포함되어 있을 때의 상호작용 반응기작을 분석하였다. 이를 위해, 네모파 벗김전압전류법이 이용되었는데, 두 CNT 전극에서 모두 네모파 벗김전압전류법의 최적조건으로, 30 Hz의 주파수, -1.2 V vs. Ag/AgCl의 석출전위 및 300 s의 석출시간이 결정되었다. 민감도 측면에서 카드뮴과 납 모두 t-CNT 전극에서 p-CNT 전극보다 더 좋은 결과를 얻었다. 두 금속의 센서민감도를 각각 측정하였을 때, 카드뮴의 경우 p-CNT 및 t-CNT 전극에서 $3.1{\mu}A/{\mu}M$$4.6{\mu}A/{\mu}M$의 센서 민감도를 보였고, 납의 경우 p-CNT 및 t-CNT 전극에서 $6.5{\mu}A/{\mu}M$$9.9{\mu}A/{\mu}M$였다. p-CNT 전극에서 t-CNT 전극보다 센서민감도가 좋은 이유는, CNT에 티올기를 적용시키면서 금속이온의 반응속도가 증가되기 때문이다. 두 금속을 동시에 넣고 민감도를 측정할 경우, 전극에 관계없이 납의 센서민감도가 카드뮴의 센서 민감도보다 우수하였다. 납과 카드뮴 중 납의 센서 민감도가 우수한 이유는 납의 표준전극전위가 낮아 산화반응성이 우수하여 카드뮴보다 더 먼저 전극위에 석출되어, 벗김반응시에 표면에서 떨어져 나가기 쉽기 때문이다.

Keywords

References

  1. Department of Epidemiology and Public Health, Imperial College, London, UK, Hazards of heavy metal contamination, British Medical Bulletin, 68, 167 (2003). https://doi.org/10.1093/bmb/ldg032
  2. J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu, Heavy metal pollution and human biotoxiceffects, Int. J. Physical Sci., 2, 112 (2007).
  3. A. Bernard and R. Lauwerys, Cadmium in human pollution, Experientia, 40, 143 (1984). https://doi.org/10.1007/BF01963577
  4. S. Satarug, R. Melissa, Haswell-Elkins, and M. R. Moore, Safe levels of cadmium intake to prevent renal toxicity in human subjects, Br. J. Nutrition, 84, 791 (2000).
  5. I. V. Seregin and V. B. Ivanov, Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants, Russ. J. Plant. Physiol, 48, 523 (2001). https://doi.org/10.1023/A:1016719901147
  6. E. K. Silbergeld, Lead in Bone: Implications for Toxicology during Pregnancy and Lactation, Environ. Health. Perspect, 91, 63 (1991). https://doi.org/10.1289/ehp.919163
  7. M. S. Baldes, Lead Uptake from Sea Water and Food, and Lead Loss in the Common Mussel Mytilusedulis, Mar. Biol, 25, 177 (1974). https://doi.org/10.1007/BF00394964
  8. P. B. Hernandez, A. R. Hernandez, M. Galvan, M. R. Romoc, M. P. Pardave, and M. T. R. Silva, Determination of the complexation constants of Pb (II) and Cd (II) withthymol blue using spectrophotometry, SQUAD and the HSAB principle, Spectrochim. Acta, 66, 68 (2007). https://doi.org/10.1016/j.saa.2006.02.022
  9. L. S. G. Teixeira, R. B. S. Rocha, E. V. Sobrinho, P. R. B. Guimaráes, L. A. M. Pontes, and J. S. R. Teixeira, Simultaneous determination of copper and iron in automotive gasoline byX-ray fluorescence after pre-concentration on cellulose paper, Talanta, 72, 1073 (2007). https://doi.org/10.1016/j.talanta.2006.12.042
  10. X. Dai, O. Nekrassova, M. E. Hyde, and R. G. Compton, Anodic Stripping Voltammetry of Arsenic (III) Using Gold Nanoparticle-Modified Electrodes, Anal. Chem., 76, 5924 (2004). https://doi.org/10.1021/ac049232x
  11. S.-H. Shin and H.-G. Hong, Anodic Stripping Voltammetric Detection of Arsenic (III) at Platinum-Iron (III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode, Bull. Korean Chem. Soc., 31, 3077 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3077
  12. H. Li and R. B. Smart, Determination of sub-nanomolar concentration ofarsenic (III) innatural waters by square wave cathodic stripping voltammetry, Anal. Chim. Acta, 325, 25 (1996). https://doi.org/10.1016/0003-2670(96)00011-6
  13. J. Wang, J. Lu, S. B. Hocevar, and P. A. M. Farias, Bismuth-Coated Carbon Electrodes for AnodicStripping Voltammetry, Anal. Chem., 72, 3218 (2000). https://doi.org/10.1021/ac000108x
  14. H. Luo, Z. Shi, N. Li, Z. Gu, and Q. Zhuang, Investigation of the Electrochemical andElectrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode, Anal. Chem., 73, 915 (2001). https://doi.org/10.1021/ac000967l
  15. I. Svancara, C. Prior, S. B. Hocevar, and J. Wang, A Decade with Bismuth-Based Electrodes in Electroanalysis, Electroanalysis, 22, 1405 (2010). https://doi.org/10.1002/elan.200970017
  16. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chemistry of Carbon Nanotubes, Chem. Rev., 106, 1105 (2006). https://doi.org/10.1021/cr050569o
  17. J.-M. You, D. Kim, and S. Jeon, Electrocatalytic reduction of $H_2O_2$ by Pt nanoparticles covalently bonded tothiolated carbon nanostructures, Electrochim. Acta, 65, 288 (2012). https://doi.org/10.1016/j.electacta.2012.01.070
  18. J.-M. You, Y. N. Jeong, M. S. Ahmed, S. K. Kim, H. C. Choi, and S. Jeon, Reductive determination of hydrogen peroxide with MWCNTs-Pd nanoparticleson a modified glassy carbon electrode, Biosens. Bioelectron, 26, 2287 (2011). https://doi.org/10.1016/j.bios.2010.09.053
  19. F. Valentini, A. Amine, S. Orlanducci, M. L. Terranova, and G. Palleschi, Carbon Nanotube Purification: Preparation and Characterization of Carbon Nanotube Paste Electrodes, Anal. Chem., 75, 5413 (2003). https://doi.org/10.1021/ac0300237
  20. W. Yantasee, B. Charnhattakorn, G. E. Fryxell, Y. Lin, C. Timchalk, and R. S. Addleman, Detection of Cd, Pb, and Cu in non-pretreated natural watersand urine with thiol functionalized mesoporous silica and Nafion composite electrodes, Anal. Chim. Acta, 620, 55 (2008). https://doi.org/10.1016/j.aca.2008.05.029
  21. W. Yantasee, Y. Lin, G. E. Fryxell, and B. J. Busche, Simultaneous detection of cadmium, copper, and lead using a carbonpaste electrode modified with carbamoylphosphonic acidself-assembled monolayer on mesoporous silica (SAMMS), Anal. Chim. Acta, 502, 207 (2004). https://doi.org/10.1016/j.aca.2003.10.001
  22. C. Choi, Y. Jeong, and Y. Kwon, Detection of Trace Copper Metal at Carbon Nanotube Based Electrodes Using Squarewave Anodic Stripping Voltammetry, Bull. Korean Chem. Soc., 34, 801 (2013). https://doi.org/10.5012/bkcs.2013.34.3.801
  23. C. Choi, J. H. Seok, and Y. Kwon, Use of Carbon Nanotube Electrode and Squarewave Anodic Stripping Voltammetryfor the Detection of Lead Heavy Metal, Appl. Chem. Eng, 23, 505 (2012).
  24. Y. Wei, Z.-G. Liu, X.-Y. Yu, L. Wang, J.-H. Liu, and X.-J. Huang, O2-plasma oxidized multi-walled carbon nanotubes for Cd(II) and Pb(II) detection: Evidence of adsorption capacity for electrochemical sensing, Electrochem. Commun, 13, 1506 (2011). https://doi.org/10.1016/j.elecom.2011.10.004
  25. A. Manivannan, R. Kawasaki, D.A. Tryk, and A. Fujishima, Interaction of Pb and Cd during anodic stripping voltammetricanalysis at boron-doped diamond electrodes, Electrochim. Acta, 49, 3313 (2004). https://doi.org/10.1016/j.electacta.2004.03.004