• Title/Summary/Keyword: Captured Image

Search Result 988, Processing Time 0.024 seconds

A neural network approach to defect classification on printed circuit boards (인쇄 회로 기판의 결함 검출 및 인식 알고리즘)

  • An, Sang-Seop;No, Byeong-Ok;Yu, Yeong-Gi;Jo, Hyeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.337-343
    • /
    • 1996
  • In this paper, we investigate the defect detection by making use of pre-made reference image data and classify the defects by using the artificial neural network. The approach is composed of three main parts. The first step consists of a proper generation of two reference image data by using a low level morphological technique. The second step proceeds by performing three times logical bit operations between two ready-made reference images and just captured image to be tested. This results in defects image only. In the third step, by extracting four features from each detected defect, followed by assigning them into the input nodes of an already trained artificial neural network we can obtain a defect class corresponding to the features. All of the image data are formed in a bit level for the reduction of data size as well as time saving. Experimental results show that proposed algorithms are found to be effective for flexible defect detection, robust classification, and high speed process by adopting a simple logic operation.

  • PDF

A Fast Algorithm for Korean Text Extraction and Segmentation from Subway Signboard Images Utilizing Smartphone Sensors

  • Milevskiy, Igor;Ha, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • We present a fast algorithm for Korean text extraction and segmentation from subway signboards using smart phone sensors in order to minimize computational time and memory usage. The algorithm can be used as preprocessing steps for optical character recognition (OCR): binarization, text location, and segmentation. An image of a signboard captured by smart phone camera while holding smart phone by an arbitrary angle is rotated by the detected angle, as if the image was taken by holding a smart phone horizontally. Binarization is only performed once on the subset of connected components instead of the whole image area, resulting in a large reduction in computational time. Text location is guided by user's marker-line placed over the region of interest in binarized image via smart phone touch screen. Then, text segmentation utilizes the data of connected components received in the binarization step, and cuts the string into individual images for designated characters. The resulting data could be used as OCR input, hence solving the most difficult part of OCR on text area included in natural scene images. The experimental results showed that the binarization algorithm of our method is 3.5 and 3.7 times faster than Niblack and Sauvola adaptive-thresholding algorithms, respectively. In addition, our method achieved better quality than other methods.

A Study on the Image Processing of Visual Sensor for Weld Seam Tracking in GMA Welding (GMA 용접에서 용접선 추적용 시각센서의 화상처리에 관한 연구)

  • 정규철;김재웅
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.60-67
    • /
    • 2000
  • In this study, we constructed a preview-sensing visual sensor system for weld seam tracking in GMA welding. The visual sensor consists of a CCD camera, a diode laser system with a cylindrical lens and a band-pass-filter to overcome the degrading of image due to spatters and/or arc light. To obtain weld joint position and edge points accurately from the captured image, we compared Hough transform method with central difference method. As a result, we present Hough transform method can more accurately extract the points and it can be applied to real time weld seam tracking. Image processing is carried out to extract straight lines that express laser stripe. After extracting the lines, weld joint position and edge points is determined by intersecting points of the lines. Although a spatter trace is in the image, it is possible to recognize the position of weld joint. Weld seam tracking was precisely implemented with adopting Hough transform method, and it is possible to track the weld seam in the case of offset angle is in the region of $\pm15^{\circ}$.

  • PDF

Restrained Effect of End Plate on Plane Strain Test Evaluated by Digital Image Correlation Method (디지털 이미지 코릴레이션 기법으로 평가한 평면변형률 시험의 단부 구속 효과)

  • Jang, Eui-Ryong;Choo, Yoon-Sik;Lee, Won-Taeg;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.22-33
    • /
    • 2008
  • The plane strain test has been used widely in order to examine the stress-strain relation and failure behavior. Its advantages are more realistic simulation of deformation and failure behaviors of soils. Most plane strain tests have been carried out with restrained end plates due to difficulties in manufacturing the equipment with free end condition and also performing it. In this study, plane strain tests with/without bottom plate restraint were performed on Jumunjin-sand. The measurement of overall and local deformation was accomplished by digital image correlation technique as well as external LVDT. By applying digital image correlation method using two consecutive images captured through the transparent wall, local deformation behavior of various parts inside the specimen was estimated. From digital image analysis result, the restrained effect of end plate was examined about formation and development of shear band, and deformation mechanism of sand under plane strain condition.

  • PDF

Ground-based Remote Sensing Technology for Precision Farming - Calibration of Image-based Data to Reflectance -

  • Shin B.S.;Zhang Q.;Han S.;Noh H.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Assessing health condition of crop in the field is one of core operation in precision fanning. A sensing system was proposed to remotely detect the crop health condition in terms of SP AD readings directly related to chlorophyll contents of crop using a multispectral camera equipped on ground-based platform. Since the image taken by a camera was sensitive to changes in ambient light intensity, it was needed to convert gray scale image data into reflectance, an index to indicate the reflection characteristics of target crop. A reference reflectance panel consisting of four pieces of sub-panels with different reflectance was developed for a dynamic calibration, by which a calibration equation was updated for every crop image captured by the camera. The system performance was evaluated in a field by investigating the relationship between com canopy reflectance and SP AD values. The validation tests revealed that the com canopy reflectance induced from Green band in the multispectral camera had the most significant correlation with SPAD values $(r^2=0.75)$ and NIR band could be used to filter out unwanted non-crop features such as soil background and empty space in a crop canopy. This research confirmed that it was technically feasible to develop a ground-based remote sensing system for assessing crop health condition.

  • PDF

Passive Millimeter-Wave Image Deblurring Using Adaptively Accelerated Maximum Entropy Method

  • Singh, Manoj Kumar;Kim, Sung-Hyun;Kim, Yong-Hoon;Tiwary, U.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.414-417
    • /
    • 2007
  • In this paper we present an adaptive method for accelerating conventional Maximum Entropy Method (MEM) for restoration of Passive Millimeter-Wave (PMMW) image from its blurred and noisy version. MEM is nonlinear and its convergence is very slow. We present a new method to accelerate the MEM by using an exponent on the correction ratio. In this method the exponent is computed adaptively in each iteration, using first-order derivatives of deblurred image in previous two iterations. Using this exponent the accelerated MEM emphasizes speed at the beginning stages and stability at later stages. In accelerated MEM the non-negativity is automatically ensured and also conservation of flux without additional computation. Simulation study shows that the accelerated MEM gives better results in terms of RMSE, SNR, moreover, it takes only about 46% lesser iterations than conventional MEM. This is also confirmed by applying this algorithm on actual PMMW image captured by 94 GHz mechanically scanned radiometer.

  • PDF

Development of vision system for the character recognition of the billet image (빌렛영상에 포함된 문자인식을 위한 비전시스템 개발)

  • Park, Sang-Gug
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • This paper describes the developed results of vision system for the recognition of material management characters, which was included in the billet image. The material management characters, which was marked at the surface of billet, should be recognized before billet moves to the next process. Our vision system for the character recognition includes that CCD camera system which acquire billet image, optical transmission system which transmit captured image to the long distance, input and output system for the interface with existing system and software for the character recognition. We have installed our vision system at the wire rod line of steel & iron plant and tested. Also, we have performed inspection of durability, reliability and recognition rate. Through the testing, we have confirmed that our system have high recognition rate, 98.6%.

  • PDF

Pixel-based crack image segmentation in steel structures using atrous separable convolution neural network

  • Ta, Quoc-Bao;Pham, Quang-Quang;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.289-303
    • /
    • 2022
  • In this study, the impact of assigned pixel labels on the accuracy of crack image identification of steel structures is examined by using an atrous separable convolution neural network (ASCNN). Firstly, images containing fatigue cracks collected from steel structures are classified into four datasets by assigning different pixel labels based on image features. Secondly, the DeepLab v3+ algorithm is used to determine optimal parameters of the ASCNN model by maximizing the average mean-intersection-over-union (mIoU) metric of the datasets. Thirdly, the ASCNN model is trained for various image sizes and hyper-parameters, such as the learning rule, learning rate, and epoch. The optimal parameters of the ASCNN model are determined based on the average mIoU metric. Finally, the trained ASCNN model is evaluated by using 10% untrained images. The result shows that the ASCNN model can segment cracks and other objects in the captured images with an average mIoU of 0.716.

Volume Measurement Method for Object on Pixel Area Basis through Depth Image (깊이 영상을 통한 화소 단위 물체 부피 측정 방법)

  • Ji-hwan Kim;Soon-kak Kwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.125-133
    • /
    • 2024
  • In this paper, we propose a volume measurement method for an object based on depth image. The object volume is measured by calculating the object height and width in actual units through the depth image. The object area is detected through differences between the captured and background depth images. The volume of the 2×2 pixel area, formed by four adjacent pixels using the depth information associated with each pixel, is measured. The object volume is measured as the sum of the volumes for whole 2×2 areas in the object area. In simulation results, the average measurement error for the object volume is 2.1% when the distance from the camera is 60cm.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF