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Abstract— 1In this paper we present an adaptive method for
accelerating conventional Maximum Entropy Method (MEM)
for restoration of Passive Millimeter-Wave (PMMW) image
from its blurred and noisy version. MEM is nonlinear and its
convergence is very slow. We present a new method to accelerate
the MEM by using an exponent on the correction ratio. In this
method the exponent is computed adaptively in each iteration,
using first-order derivatives of deblurred image in previous two
iterations. Using this exponent the accelerated MEM emphasizes
speed at the beginning stages and stability at later stages. In
accelerated MEM the non-negativity is automatically ensured
and also conservation of flux without additional computation.
Simulation study shows that the accelerated MEM gives better
results in terms of RMSE, SNR, moreover, it takes only about
46% lesser iterations than conventional MEM. This is also
confirmed by applying this algorithm on actual PMMW image
captured by 94 GHz mechanically scanned radiometer.

Index Terms— Image deblurring, Maximum Entropy, ill-
conditioned, nonlinear method.

I. INTRODUCTION

Passive millimeter-wave (PMMW) image have an
inherently poor resolution and highly blurred due to limited
aperture dimension and the consequent diffraction limits.
Thus, an efficient PMMW 1mage deblurring algorithm is
required to get high quality image in order to use for practical
purpose. Image deblurring is a longstanding linear inverse
problem and is encountered in many application areas such as
remote sensing, medical imaging, seismology, and astronomy
[1]-[3]. Generally many linear inverse problems are ill-
conditioned, since either the inverse of linear operators does
not exist or is nearly singular yielding highly noise sensitive
solutions. Most methods given to solve ill-conditioned
problems are classified into following two categories: a)
Methods based on regularization [2], [3] and b) Methods
based on Bayesian theory [1], [2], [4] - [8].

The main idea of regularization and Bayesian approach is
the use of a priori information expressed by Regularization/
prior term. Prior term gives a higher score to most likely
images. However, modeling a prior for real-word images is
not trivial and subjective matter. Many directions for prior

modeling have been proposed such as derivative energy in the
Wiener filter [2],[3], compound Gauss Markov random field
[2], [13], Markov random fields with non quadratic potentials
[2], [11], [13], Entropy [1], [8], [10], and heavy tailed
densities of images in wavelet domain [12]. But in the
absence of any prior information about the original image,
entropy is considered as the best choice to define prior term
[4].

MEM developed under Bayesian framework 1s nonlinear
and solved iteratively [8], [10]. However, it has the
drawbacks of slow convergence and being computationally
expensive. Many techniques for accelerating the iterative
method have been proposed, these can also be used for
accelerating the MEM [1], [9]. All these methods use
correction terms - may be negative at times — which are
computed in every iteration, multiplied with acceleration
parameter, and added to the results obtained in previous
iteration. Because the correction term may be negative at
times, the non-negativity of pixel intensity in restored image
is not guaranteed. In these acceleration methods postivity is
enforced manually at the end of iterations. The main
drawback of these acceleration methods is the selection of
optimal acceleration parameter. Large acceleration parameter
speeds up the algorithm, but it may introduce error. If error is
amplified during iteration, it can lead to instability. Thus
these methods require a correction procedure in order to
ensure the stability. This correction procedure reduces the
gain obtained by acceleration step and also needs extra
computation.

In this paper we propose a new adaptive acceleration
method for MEM in order to cope with the problem of earlier
acceleration method. The proposed acceleration method
requires minimum information about the iterative process.
We use an exponent on multiplicative correction as an
acceleration parameter which is computed adaptively in each
iteration using first order derivative of deblurred image from
previous two iterations. The positivity of pixel intensity in the
proposed acceleration method is automatically ensured since
multiplicative correction term is always positive. Maintaining
the total flux is important for applications where the blurring
does not change the total number of photons or electrons
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detected. In this method we also achieve flux conservation
without extra computational overhead. Section II discusses
the accelerated MEM and in Section III adaptive acceleration
of MEM is presented. In Section IV simulation and
experiment results are presented. Section V gives the
conclusion, which is followed by references.

II. ACCELERATED MAXIMUM ENTROPY METHOD WITH
FLUX CONSERVATION FOR IMAGE DEBLURRING

Let an original image, size M x N, blurred by shift-
invariant point spread function (PSF) and corrupted by
Poisson noise. This can be written in matrix form as [14]:

y=Hx+n, (1)
where H 1s MN x MN block Toeplitz matrix representing a
linear shift-invariant PSF; x, y, and » are vectors of size MN x
1 containing the original image, observed image, and sample
of noise, respectively, arranged in column lexicographic
ordering. The aim in image deblurring is to find an estimate
of an original image x for a given blurred image y blurring
operator H and distribution of noise .

We derive the MEM, in Bayesian framework, with
Poisson type noise n. The basic idea of Bayesian framework
1s to incorporate the prior information, about the solution. A
prior information is included using a priori distribution. In
MEM,, a priori distribution, p(x), is defined using entropy as

p(x) = exp(-£(x)), 2

where E(x) 1s the entropy of the original image x. We use the
following entropy function

E(x)= —Zixi log x;. (3)

When 7 is zero in Eq. (1), we consider only blurring, the
expected value at the i pixel in the blurred image is

Zjhijxj' Where 4; is (i, j)" element of H and x; is the j*

element of x. Because of Poison noise, the actual i pixel
value y; in y is one realization of Poisson distribution with

mean Z}. h;x ;. Thus we have following relation:

plyi/x)= (Z UJ) exp( -2 it UJ)/ @)

Each pixel in blurred and noisy image, y, is realized by an
independent Poisson process. Thus the likelihood of getting
noisy and blurred image y is given by

p(v/%) H{(Z R ,”)/ } 5)

MEM method with flux conservation for image deblurring,
seeks an approximate solution of (1) that maximizes the a
posteriort probability p(x/y) or log p(x/y), subject to the

constraint of flux conservation, ijj = N, where N is the

sum of pixel values in observed image. We consider the
maximization of following function

L(x,u)=10gp(x/y)—u(zjxj—N)- (6)

where o is the Lagrange multiplier for flux conservation.
Now from Bye’s theorem substitution of p(x/y) in terms of

p(y/x) in (6), and then using p(x), p(y/x) from (2), (5) we get

L(x,ﬂ):—}:i[—z ij J‘”’llog(z i fﬂ

(7)
—ijj long ——y(zjxj —N)

For maximization of L, OL(x, u )/ Ox P 0, we get the

following relation

1+ pu= Zi[ihik {(yi/zjhyxj)—-l}}-—log(xk). (8)

Eq. (8) is nonlinear in x;, and is solved iteratively. By adding
a positive constant C and raising exponent g both sides of (8),
and then multiply both sides by x;, we arrive at the following
iterative procedure:

g
xllc+1:Ax;lc[Zf(hikyi/zjh{-jx;)—1+10gx§(+C] . 9)

where 4 = [ 1+ u +C 7.
of x , which allow the computation of logx; in the next

For ensuring the non-negativity

iteration, a suitable constant C is selected. The constant A4 is
recalculated at the end of each iteration using consframnt

TI. (10)

It is found that the iteration given in (9) converges for
1<g <3. Large values of g give faster convergence but the

Z ; xﬁ- = N. Accordingly, we get following:

A@=N{kafc {Z,-(hikyi/ > jh,-,-xﬂ-)—l—logx,’;rc

risk of instability increases. Smaller values of g lead to slow
convergence and reduce the risk of instability. Thus, relation
(9) with adaptive selection of an exponent g leads to the
adaptively accelerated MEM. For g = 1, relation (9) gives
conventional MEM. It is found that the convergence speed
does not depend on the choice of C.

II1. ADAPTIVE SELETION OF EXPONENT
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The choice of ¢ in Eq. (9) mainly depends on the noise, »,
and its amplification during iterations. If noise is high,
smaller value of g is selected and vice-versa. Thus the
convergence speed of the proposed method depends on the
choice of the parameter g. Drawback of this accelerated form
of MEM i1s that the selection of exponent g has to be done
manually by trial and error. We overcome such serious
limitation by proposing a method in which ¢ is computed
adaptively as iterations proceed. Proposed expression for g is
as follows:

/

Vi V2

Vxl_l“

, (11)

g({+1)=exp

‘Vxl

where Vx' stands for the first-order derivative of x' and |||
denotes the L, norm. Main idea in using first-order derivative
is to utilize the sharpness of image. Because of the blurring,
the 1image becomes smooth, sharpness decreases, and edges
are lost or become weak. Deblurring makes image non-
smooth, and increases the sharpness. Hence the sharpness of

deblurred image, Vx', increases as iterations proceed. For

different level of blur and different classes of images, it has
been found by experiments that L, norm of gradient ratio

”V’xZ ” / HVxl = H converges to 1 as the number of iterations

increase. Accelerated MEM emphasizes speed at the
beginning stages of iterations by forcing ¢ around three.
When the exponential term in (11) is greater than three, the

oo o

to prevent divergence. As iterations increase the second term
forces g towards the value of one which leads to stability of
iteration. By using the proposed exponent, g, the method
emphasizes speed at the beginning stages and stability at later
stages of iteration. Thus selecting ¢ given by (11) for iterative
solution (9) gives accelerated MEM with adaptive selection
of acceleration parameter. The non-negativity of pixel
intensity 1s automatically ensured, since correction ratio (9)
is always positive. In order to initialize the proposed method,

first two iterations are computed using some fixed value of ¢
(1<g<3).

second term,

, limits the value of ¢ within three

IV. SIMULATION AND EXPERIMENT RESULTS

For simulation, we choose the gray scale test image
“Cameraman” (8-bit, 256 x 256), uniform 5x5 Box-car PSF,
and Poisson noise. The blurred signal to noise ratio (BSNR) as
defined in [14] 1s set to 40 dB. The RMSE and SNR criteria
are used for performance comparison of conventional and
adaptive accelerated MEM. Figure 1 (a), (b) show the original
and noisy blurred images of this simulation. Figure 1 (¢), (d)
show the results of the MEM and accelerated MEM
corresponding to maximum SNR. Figures 3 (a), (b), show the
variation of SNR, RMSE versus iterations for MEM and
accelerated MEM. It is observed that the accelerated MEM

has faster increase in SNR and faster decrease in RMSE in
comparison of MEM method. Figure 4 shows the variation of
exponent g versus iteration number.

Result of real PMMW image, captured by 94 GHz
mechanically scanned radiometer, using estimated PSF of
[15] 1s shown 1n figure 2.

Figure 1. “Cameraman” a) Original b) Noisy and Blurred c¢) Restored
by MEM corresponding maximum SNR in 367 iteartion d) Retored
Image by Adaptively Accelerated MEM corresponding maximum SNR
in 200 iterations.

a) Observed 94 GHz PMMW image
¢) Conventional MEM in 35

Figure 2. b) Adaptively
Accelarated MEM in 10 iteration

iteration.

V. CONCLUSION
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We have given a new method to accelerate the
conventional MEM. This method adaptively computes
exponent of correction term in each iteration using the first-
order derivative of the restored image in previous two
iteration. The aim of adaptive selection of the exponent, g, is
to emphasize speed and stability at early and late stages of
iteration respectively. From simulation and experiment, it is
found that accelerated MEM gives better results in terms of
RMSE, high SNR, approximately in 46% lesser iterations
than the conventional MEM method. While computations
required per iteration in MEM as well as accelerated MEM
are almost same. This adaptive acceleration method has
simple form and can be very easily implemented. Accelerated

MEM automatically preserves the non-negativity and flux,
without additional computations.
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Figure 3. a) RMSE of the MEM (dotted line), RMSE of the
Accelerated MEM (solid line) b) SNR of the MEM (dotted line),
SNR of the Accelerated (solid line).
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