• Title/Summary/Keyword: Cap formation

Search Result 96, Processing Time 0.02 seconds

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

Antiangiogenic Activity of the Lipophilic Antimicrobial Peptides from an Endophytic Bacterial Strain Isolated from Red Pepper Leaf

  • Jung, Hye Jin;Kim, Yonghyo;Lee, Hyang Burm;Kwon, Ho Jeong
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.273-278
    • /
    • 2015
  • The induction of angiogenesis is a crucial step in tumor progression, and therefore, efficient inhibition of angiogenesis is considered a powerful strategy for the treatment of cancer. In the present study, we report that the lipophilic antimicrobial peptides from EML-CAP3, a new endophytic bacterial strain isolated from red pepper leaf (Capsicum annuum L.), exhibit potent antiangiogenic activity both in vitro and in vivo. The newly obtained antimicrobial peptides effectively inhibited the proliferation of human umbilical vein endothelial cells at subtoxic doses. Furthermore, the peptides suppressed the in vitro characteristics of angiogenesis such as endothelial cell invasion and tube formation stimulated by vascular endothelial growth factor, as well as neovascularization of the chorioallantoic membrane of growing chick embryos in vivo without showing cytotoxicity. Notably, the angiostatic peptides blocked tumor cell-induced angiogenesis by suppressing the expression levels of hypoxia-inducible $factor-1{\alpha}$ and its target gene, vascular endothelial growth factor (VEGF). To our knowledge, our findings demonstrate for the first time that the antimicrobial peptides from EML-CAP3 possess antiangiogenic potential and may thus be used for the treatment of hypervascularized tumors.

Spermiogenesis in the Saghalien Pygmy Shrew, Sorex minutus gracillimus (쇠뒤쥐 (Sorex minutus gracillimus)의 정자변태)

  • Heo, Jin-Chol;Lee, Jung-Hun
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.129-141
    • /
    • 2001
  • To investigate the spermiogenesis of the Saghalien Pygmy shrew (Sorex minutus gracillimus), the testis obtained from mature male shrew was studied by electron microscopy, and the following results obtained based on the morphological characteristics of cell differentiation of the seminiferous epithelium in the testis. According to the fine structural differentiation, spermiogenesis of S. minutus gracillimks was divided into Golgi, cap, acrosome, maturation and spermiation phases. Beside, the Golgi and cap phases were subdivided into three steps of early, middle and late phase respectively, and acrosome phase into two steps of early and late phase , and maturation and spermiation phases has only one step respectively. Thus, the spermiogenesis of S. minutus gracillimus was divided into a total of ten steps. The chromatin granules begin to be condensed in the acrosome phase, and a perfect nucleus of sperm was formed at the spermiation phase. Mancette were appeared from the late acrosome phase to the maturation phase. The formation of sperm tail began to develop in the late Golgi phase, and completed at the spermiation phase. Multivesicular bodies were appeared from the Golgi phase to the maturation phase, recognized with pale, pale and moderate, and dense at Golgi, cap and acrosomal and matulation phases respectively.

  • PDF

Correlation between pit formation and phase separation in thick InGaN film on a Si substrate

  • Woo, Hyeonseok;Jo, Yongcheol;Kim, Jongmin;Cho, Sangeun;Roh, Cheong Hyun;Lee, Jun Ho;Kim, Hyungsang;Hahn, Cheol-Koo;Im, Hyunsik
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1558-1563
    • /
    • 2018
  • We demonstrate improved surface pit and phase separation in thick InGaN grown on a GaN/Si (111) substrate, using plasma-assisted molecular beam epitaxy with an indium modulation technique. The formation of surface pit and compositional inhomogeneity in the InGaN epilayer are investigated using atomic force microscopy, scanning electron microscopy and temperature-dependent photoluminescence. Indium elemental mapping directly reveals that poor compositional homogeneity occurs near the pits. The indium-modulation epitaxy of InGaN minimizes the surface indium segregation, leading to the reduction in pit density and size. The phase separation in InGaN with a higher pit density is significantly suppressed, suggesting that the pit formation and the phase separation are correlated. We propose an indium migration model for the correlation between surface pit and phase separation in InGaN.

Embryology of Jeffersonia dubia Baker et S. Moore (Berberidaceae) and comparison with allied genera (깽깽이풀의 발생과 근연속간 비교)

  • Ghimire, Balkrishna;Heo, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.42 no.4
    • /
    • pp.260-266
    • /
    • 2012
  • Because the embryological features of Jeffersonia dubia are poorly understood, we conducted the first embryological study comparing it to other related genera of Berberidaceae. Important embryological features of J. dubia are as follows: the anther is tetrasporangiate, anther wall formation confirms basic type, glandular tapetum cells are two nucleate, the epidermis persistent, and the endothecium develops fibrous thickenings, anther dehiscence by two valves, meiosis in a microspore mother cell is accompanied by simultaneous cytokinesis, microspore tetrads are usually tetrahedral, pollen grains two cells at the time of anthesis. The ovule is bitegmic, anatropous and crassinucellate, archesporium single celled, development of the embryo sac Polygonum type, a mature embryo sac is ellipsoidal in shape. Endosperm formation is of Nuclear type and embryogeny Onagrad type. Seeds are arillate and seed coat exotestal type. Embryological comparisons showed that Jeffersonia resemble to Epimedium and Vancouveria rather than Berberis and Mahonia in some features, like as number of tapetal cells, cytokinesis in meiosis, and thickness of exotesta. It also resembles to Gymnospermium in mode of anther wall formation, number of tapetal cells, formation of nucellar cap, and nature of antipodal cells. Nevertheless, Jeffersonia and Gymnospermium differ from several other embryological features and molecular data too. Therefore, embryological evidences support that Jeffersonia is closely related with Epimedium and Vancouveria.

Embryology of Gymnospermium microrrhynchum (Berberidaceae) (한계령풀의 생식기관 발생형태)

  • Ghimire, Balkrishna;Shin, Dong-Yong;Heo, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.4
    • /
    • pp.226-233
    • /
    • 2010
  • An intensive study of the embryology of Gymnospermium microrrhynchum was conducted to provide information regarding a discussion of the phylogenetic relationships of the genus, which is yet unstudied. Our results indicated that Gymnospermium is similar to other genera of Berberidaceae in terms of its embryological features. Nevertheless, newly reported and unique features are the well-developed endothelium and the undifferentiated seed coat type. Until the study of Gymnospermium, it may have been considered to be closer to Caulophyllum and Leontice in the tribe Leonticeae. These three genera share many morphological features as well as molecular similarities, by which they are kept in the same tribe, Leonticeae. However, very little detailed embryological data regarding these genera have been published thus far. Gymnospermium was characterized according to the basic type of anther wall formation as well as its glandular tapetum, successive cytokinesis in the microspore mother cell, two-celled mature pollen grains, anatropous and crassinucellate ovules with a nucellar cap, well-developed endothelium, its Polygonum type of embryo sac formation, its nuclear type of endosperm formation, and its undifferentiated seed coat type. In comparison with Nandina, there are many differences, such as the dehiscence of the anther, the cytokinesis in the microspore mother cells, the shape of the megaspore dyad, and the seed characteristics. Although we had no available detailed embryological information regarding Caulophyllum and Leontice, which are genera that are more closely related to Gymnospermium, we could deduce from the phylogenetic relationship that Gymnospermium, Caulophyllum, and Leontice are more closely related to each other than other genera of Berberidaceae on the basis of the seed characteristics.

Differentiation of human male germ cells from Wharton's jelly-derived mesenchymal stem cells

  • Dissanayake, DMAB;Patel, H;Wijesinghe, PS
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • Objective: Recapitulation of the spermatogenesis process in vitro is a tool for studying the biology of germ cells, and may lead to promising therapeutic strategies in the future. In this study, we attempted to transdifferentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into male germ cells using all-trans retinoic acid and Sertoli cell-conditioned medium. Methods: Human WJ-MSCs were propagated by the explant culture method, and cells at the second passage were induced with differentiation medium containing all-trans retinoic acid for 2 weeks. Putative germ cells were cultured with Sertoli cell-conditioned medium at $36^{\circ}C$ for 3 more weeks. Results: The gene expression profile was consistent with the stage-specific development of germ cells. The expression of Oct4 and Plzf (early germ cell markers) was diminished, while Stra8 (a premeiotic marker), Scp3 (a meiotic marker), and Acr and Prm1 (postmeiotic markers) were upregulated during the induction period. In morphological studies, approximately 5% of the cells were secondary spermatocytes that had completed two stages of acrosome formation (the Golgi phase and the cap phase). A few spermatid-like cells that had undergone the initial stage of tail formation were also noted. Conclusion: Human WJ-MSCs can be transdifferentiated into more advanced stages of germ cells by a simple two-step induction protocol using retinoic acid and Sertoli cell-conditioned medium.

Gene Expression Profiling by Microarray during Tooth Development of Rats

  • Yoo, Hong-Il;Shim, Hae-Kyoung;Kim, Sun-Hun
    • International Journal of Oral Biology
    • /
    • v.40 no.3
    • /
    • pp.151-159
    • /
    • 2015
  • Odontogenic cells express many genes spatiotemporally through complex and intricate processes during tooth formation. Therefore, investigating them during the tooth development has been an important subject for the better understanding of tooth morphogenesis. The present study was performed to identify the genetic profiles which are involved in the morphological changes during the different stages of rat tooth development using the Agilent Rat Oligonucleotide Microarrays. Morphologically, the maxillary 3rd molar germ at 10 days post-partum (dpp) was at the cap/bell stage. In contrast, the maxillary 2nd molar germ showed the root development stage. After microarray analysis, there were a considerable number of up- or down-regulated genes in the 3rd and the 2nd molar germ cells during tooth morphogenesis. Several differentially expressed genes for nerve supply were further studied. Among them, neuroligin 1 (Nlgn 1) was gradually downregulated during tooth development both at the transcription and the translation level. Also, Nlgn 1 was mostly localized in the dental sac, which is an important component yielding the nerve supply. This genetic profiling study proposed that many genes may be implicated in the biological processes for the dental hard tissue formation and, furthermore, may allow the identification of the key genes involved in the nerve supply to the dental sac.

Assessment of CO2 Geological Storage Capacity for Basalt Flow Structure around PZ-1 Exploration Well in the Southern Continental Shelf of Korea (남해 대륙붕 PZ-1 시추공 주변 현무암 대지 구조의 CO2 지중저장용량 평가)

  • Shin, Seung Yong;Kang, Moohee;Shinn, Young Jae;Cheong, Snons
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.33-43
    • /
    • 2020
  • CO2 geological storage is currently considered as the most stable and effective technology for greenhouse gas reduction. The saline formations for CO2 geological storage are generally located at a depth of more than 800 m where CO2 can be stored in a supercritical state, and an extensive impermeable cap rock that prevents CO2 leakage to the surface should be distributed above the saline formations. Trough analysis of seismic and well data, we identified the basalt flow structure for potential CO2 storage where saline formation is overlain by basalt cap rock around PZ-1 exploration well in the Southern Continental Shelf of Korea. To evaluate CO2 storage capacity of the saline formation, total porosity and CO2 density are calculated based on well logging data of PZ-1 well. We constructed a 3D geological grid model with a certain size in the x, y and z axis directions for volume estimates of the saline formation, and performed a property modeling to assign total porosity to the geological grid. The estimated average CO2 geological storage capacity evaluated by the U.S. DOE method for the saline formation covered by the basalt cap rock is 84.17 Mt of CO2(ranges from 42.07 to 143.79 Mt of CO2).

Flower and Microspore Development in 'Campbell Early' (Vitis labruscana) and 'Tamnara' (V. spp.) Grapes ('캠벨얼리'와 '탐나라' 포도의 꽃과 소포자 발달)

  • Yim, Bomi;Mun, Jeong-Hwan;Jeong, Young-Min;Hur, Youn Young;Yu, Hee-Ju
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.420-428
    • /
    • 2015
  • The majority of cultivated varieties of grape have perfect flowers that are clustered in an individual inflorescence. Grape flower has a single pistil, five stamens, a protective flower cap (calyptra), and a calyx. After fertilization, an individual flower develops into a single berry. Although there are a number of reported studies focusing on berry formation, berry enlargement, and sugar accumulation in grape, the morphological studies of flower, including gametophyte morphogenesis and structural change in floral organs, have not yet been studied in detail. In this study, we investigated the flower structure and development characteristics of grape using microscopy and defined the floral development stages 9 to 13 based on microspore or male gametophyte development stage from tetrad to mature pollen. We used seeded diploid table grapes 'Campbell Early' (Vitis labruscana) and 'Tamnara' (V. spp.) as plant materials. At floral development stage 9, pollen mother cells develop to tetrads. During floral development stages 10 to 11, unicellular microspore develop to mid bicellular pollen. At the end of floral stage 12, male gametophyte develops to mature tricelluar pollen. In floral stage 13, the flower cap falls off and flower bud opens. During floral development stages 9 to 12, there were no major changes in calyx length, whereas the length of the flower cap continuously increased. The flower cap-to-calyx length ratio was 2.0, 3.0, 4.5, and 6.5 at floral stages 9, 10, 11, and 12, respectively. The flower cap-to-calyx length ratio was consistent in the two grape cultivars, suggesting that the ratio is a morphological character representing floral development stage. This study provides a reference for determining floral development stage of the two grape cultivars. It will be useful for the determination of optimum time for microspore culture needed to generate doubled haploid lines and appropriate gibberellic acid treatment needed to induce parthenocarpic fruit development in 'Tamnara' grape.