DOI QR코드

DOI QR Code

Flower and Microspore Development in 'Campbell Early' (Vitis labruscana) and 'Tamnara' (V. spp.) Grapes

'캠벨얼리'와 '탐나라' 포도의 꽃과 소포자 발달

  • Yim, Bomi (Department of Life Science, The Catholic University of Korea) ;
  • Mun, Jeong-Hwan (Department of Bioscience and Bioinformatics, Myongji University) ;
  • Jeong, Young-Min (Department of Life Science, The Catholic University of Korea) ;
  • Hur, Youn Young (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Yu, Hee-Ju (Department of Life Science, The Catholic University of Korea)
  • 임보미 (가톨릭대학교 생명.환경학부 생명과학전공) ;
  • 문정환 (명지대학교 생명과학정보학부) ;
  • 정영민 (가톨릭대학교 생명.환경학부 생명과학전공) ;
  • 허윤영 (국립원예특작과학원 과수과) ;
  • 유희주 (가톨릭대학교 생명.환경학부 생명과학전공)
  • Received : 2014.12.12
  • Accepted : 2014.12.30
  • Published : 2015.06.30

Abstract

The majority of cultivated varieties of grape have perfect flowers that are clustered in an individual inflorescence. Grape flower has a single pistil, five stamens, a protective flower cap (calyptra), and a calyx. After fertilization, an individual flower develops into a single berry. Although there are a number of reported studies focusing on berry formation, berry enlargement, and sugar accumulation in grape, the morphological studies of flower, including gametophyte morphogenesis and structural change in floral organs, have not yet been studied in detail. In this study, we investigated the flower structure and development characteristics of grape using microscopy and defined the floral development stages 9 to 13 based on microspore or male gametophyte development stage from tetrad to mature pollen. We used seeded diploid table grapes 'Campbell Early' (Vitis labruscana) and 'Tamnara' (V. spp.) as plant materials. At floral development stage 9, pollen mother cells develop to tetrads. During floral development stages 10 to 11, unicellular microspore develop to mid bicellular pollen. At the end of floral stage 12, male gametophyte develops to mature tricelluar pollen. In floral stage 13, the flower cap falls off and flower bud opens. During floral development stages 9 to 12, there were no major changes in calyx length, whereas the length of the flower cap continuously increased. The flower cap-to-calyx length ratio was 2.0, 3.0, 4.5, and 6.5 at floral stages 9, 10, 11, and 12, respectively. The flower cap-to-calyx length ratio was consistent in the two grape cultivars, suggesting that the ratio is a morphological character representing floral development stage. This study provides a reference for determining floral development stage of the two grape cultivars. It will be useful for the determination of optimum time for microspore culture needed to generate doubled haploid lines and appropriate gibberellic acid treatment needed to induce parthenocarpic fruit development in 'Tamnara' grape.

상업적으로 재배되고 있는 대부분의 포도 꽃은 완전화로서 개개의 꽃들이 모여 화서를 이룬다. 포도 꽃은 5개의 수술, 1개의 암술, 5개의 꽃잎이 융합된 구조인 화관, 그리고 융합된 형태의 꽃받침을 가지며 화방 내 각각의 꽃은 수정하여 과립으로 발달한다. 포도에서는 과립 형성이나 과립비대, 당도의 축적에 대한 연구는 많이 수행된 반면 배우체의 형태 형성, 꽃 기관의 구조, 그리고 꽃 발달과 같은 꽃의 형태적 연구는 거의 이루어지지 않고 있다. 본 연구에서는 '캠벨얼리'와 '탐나라'의 두 품종에서 꽃의 구조와 발달에 따른 특징들을 조사하였다. 포도 꽃의 발달 단계 결정은 애기장대에서 소포자의 형성부터 수 배우체의 발달 시기인 꽃발달 9단계부터 13단계로만 한정하였다. 포도 꽃 발달 9단계에서는 4분포자가 나타났고 꽃 발달 10에서 11단계 동안에는 단세포성 소포자에서부터 중기 2세포성 화분으로 발달하였다. 개화 직전의 꽃 발달 12단계 말에는 성숙한 3세포성화분으로 발달하였다. 꽃 발달 13단계에는 화관이 탈락하고 개화가 일어났다. 꽃 발달 9단계부터 12단계까지 꽃받침 길이는 거의 변하지 않았지만 화관의 길이는 계속 증가했다. 두 포도 품종에서 '꽃받침 길이에 대한 화관 길이의 비율'의 평균은 꽃 발달 9단계에서는 2.0, 꽃 발달 10단계에서는 3.0, 꽃 발달 11단계에서는 4.5, 꽃 발달 12단계에서는 6.5로 나타났으며, '꽃받침 길이에 대한 화관 길이의 비율'을 사용하여 꽃 발달 단계를 판별할 수 있었다. 본 연구 결과로 '캠벨얼리'와 '탐나라'에서 꽃 발달 단계를 정확하게 추정하는 형태적 지표가 개발되었다. 이를 이용하면 두 품종에서 소포자 배양 시기의 판정이나 '탐나라'에서 무핵과 유도를 위한 지베렐린 처리 시기의 판정 등에 유용하게 활용될 수 있을 것이다.

Keywords

References

  1. Abreu, I., I. Costa, M. Oliveira, M. Cunha, and R. de Castro. 2006. Ultrastructure and germination of Vitis vinifera cv. Loureiro pollen. Protoplasma 228:131-135. https://doi.org/10.1007/s00709-006-0167-1
  2. Berger, F. and D. Twell. 2011. Germline specification and function in plants. Annu. Rev. Plant Biol. 62:461-484. https://doi.org/10.1146/annurev-arplant-042110-103824
  3. Borg, M., L. Brownfield, and D. Twell. 2009. Male gametophyte development: a molecular perspective. J. Exp. Bot. 60:1465-1478. https://doi.org/10.1093/jxb/ern355
  4. Boss, P.K., E. Sensi, C. Hua, C. Davies, and M.R. Thomas. 2002. Cloning and characterisation of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry developmen. Plant Sci. 162:887-895. https://doi.org/10.1016/S0168-9452(02)00034-1
  5. Bowman, J.L., D.R. Smyth, and E.M. Meyerowitz. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1-20.
  6. Coombe, B.G. 1995. Growth stages of the grapevine: Adoption of a system for identifying grapevine growth stages. Austral. J. Grape Wine Res. 1:104-110. https://doi.org/10.1111/j.1755-0238.1995.tb00086.x
  7. Dokoozlian, N.K. 2000. Grape berry growth and development, p. 30-37. In: L.P. Christensen (ed.). Raisin production manual. Agricultural Natural Resources Communication Services. CA.
  8. Eichhorn, K.W. and H. Lorenz. 1977. Phaenologische Entwicklungstadien der Rebe. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 29:119-120.
  9. Fernandezl, L., J. Chaïb, J.M. Martínez-Zapater, M.R. Thomas, and L. Torregrosa. 2013. Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine. Plant J. 73:918-928. https://doi.org/10.1111/tpj.12083
  10. Jung, C.J., Y.Y. Hur, H.-J. Yu, J.-H. Noh, K.-S. Park, and H.J. Lee. 2014. Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development. Plos One 9:e95634. https://doi.org/10.1371/journal.pone.0095634
  11. Lebon, G., G, Wojnarowiez, B. Holzapfel, F. Fontaine, N. Vaillant- Gaveau, and C. Clement. 2008. Sugars and flowering in the grapevine (Vitis vinifera L.). J. Exp. Bot. 59:2565-2578. https://doi.org/10.1093/jxb/ern135
  12. Müller, A. 1961. Zur Charakterisierung der Bluten und Infloreszenzen von Arabidopsis thaliana (L.) Heynh. Die Kulturpflanze 9:364-393. https://doi.org/10.1007/BF02095757
  13. Park, K.S., H.K. Yun, H.S. Suh, S.B. Jeong, and H.M. Coh. 2004. Breeding of early season grape cultivar 'Tamnara' (Vitis hybrid) with high quality and disease resistance. J. Kor. Soc. Hort. Sci. 22:458-461.
  14. Poupin, M.J., F. Federici, C. Medina, J.T. Matus, T. Timmermann, and P. Arce-Johnson. 2007. Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 404:10-24. https://doi.org/10.1016/j.gene.2007.08.005
  15. Regan, S.M. and B.A. Moffatt. 1990. Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant. Plant Cell 2:877-889. https://doi.org/10.1105/tpc.2.9.877
  16. Segui'-Simarro, J.M. and F. Nuez. 2008. How microspores transform into haploid embryos: Changes associated with embryogenesis induction and microspore derived embryogenesis. Physiol. Plant. 134:1-12. https://doi.org/10.1111/j.1399-3054.2008.01113.x
  17. Smyth, D.R., J.L. Bowman, and E.M. Meyerowitz. 1990. Early Flower Development in Arabidopsis. Plant Cell 2:755-767. https://doi.org/10.1105/tpc.2.8.755
  18. Srinivasan, C. and M.G. Mullins. 1981. Physiology of flowering in the grapevine. Amer. J. Enol. Viticulture 32:47-63.
  19. Twell, D. 2011. Male gametogenesis and germline specification in flowering plants. Sex. Plant Reprod. 24:149-160. https://doi.org/10.1007/s00497-010-0157-5