DOI QR코드

DOI QR Code

Development of an Efficient Method of Screening for Watermelon Plants Resistant to Fusarium oxysporum f. sp. niveum

수박 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발

  • Jo, Eun Ju (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Ji Hyun (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong Ho (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Choi, Gyung Ja (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology)
  • 조은주 (한국화학연구원 바이오화학연구센터) ;
  • 이지현 (한국화학연구원 바이오화학연구센터) ;
  • 최용호 (한국화학연구원 바이오화학연구센터) ;
  • 김진철 (전남대 응용생물공학부) ;
  • 최경자 (한국화학연구원 바이오화학연구센터)
  • Received : 2014.09.12
  • Accepted : 2015.02.26
  • Published : 2015.06.30

Abstract

This study was conducted to establish an efficient screening method for watermelon plants resistant to Fusarium wilt (FW), which is caused by Fusarium oxysporum f. sp. niveum (Fon). An HA isolate was prepared from a wilted watermelon plant in Haman-gun and identified as F. oxysporum f. sp. niveum based on morphological characteristics, molecular analyses of ITS (internal transcribed spacer) and TEF (translation elongation factor $1{\alpha}$) sequences, and host specificity on cucurbits including watermelon, melon, oriental melon, and cucumber. The assay for disease response of watermelon differentials indicated that the HA isolate was race 0. Among seven liquid media tested, the highest amount of Fon spores was produced from V8-juice broth, which was selected as a medium for mass production of Fon. The disease assay for 21 watermelon and 11 watermelon-rootstock cultivars demonstrated that 20 watermelon cultivars except for 'Soknoranggul' were susceptible; 'Soknoranggul' was moderately resistant. All the tested rootstock cultivars were highly resistant to the HA isolate. The evaluation of disease development depending on various conditions suggested that an efficient screening method for FW resistance in watermelon plants is to dip the roots of 10-day-old seedlings in spore suspension of $1.0{\times}10^5-1.0{\times}10^6conidia{\cdot}mL^{-1}$ for 30 min., to transplant the seedlings to plastic pots with a fertilized soil, and then to cultivate the plants at $25^{\circ}C$ for 3 weeks.

본 연구는 Fusarium oxysporum f. sp. niveum(Fon)에 의해 발생하는 수박 덩굴쪼김병에 대한 효율적인 저항성 검정법을 확립하기 위하여 수행되었다. 함안 지역에서 채집한 덩굴쪼김병이 발생한 수박으로부터 HA 균주를 분리하였다. 이 균주는 형태적 특성, ITS와 TEF 영역을 이용한 분자생물학적 동정 그리고 수박, 멜론, 참외, 오이 등의 박과 작물에 대한 기주 특이성 결과에 따라 F. oxysporum f. sp. niveum으로 동정되었다. 그리고 Fon HA 균주는 수박 덩굴쪼김병 race 판별품종의 저항성 반응에 의해 race 0인 것을 알 수 있었다. 그리고 실험한 7종 배지 중 V8-juice broth 배지에서 가장 많은 양의 포자가 형성되었고 배지 제조도 간단하여 이 배지를 Fon HA 균주의 접종원 대량 생산을 위한 최적 배지로 선발하였다. 시판 중인 21개 수박 품종과 11개 수박용 대목 품종의 덩굴쪼김병에 대한 저항성을 실험하였다. 중도저항성을 보인 '속노란꿀'을 제외한 20개 수박 품종들은 감수성을, 11종 대목 품종들은 모두 저항성 반응을 보였다. 이들 중 감수성과 중도저항성인 수박 2종 '서태자'와 '속노란꿀' 그리고 저항성인 대목 1종 '불로장생'을 선발하여 수박의 생육 시기, 접종원 농도, 포자현탁액에 침지하는 시간 및 접종 후 재배 온도 등 발병 조건에 따른 이들 품종의 덩굴쪼김병에 대한 저항성 반응의 차이를 조사하였다. 이들 결과로 부터 수박 덩굴쪼김병에 대한 저항성을 효과적으로 검정하는 방법으로 수박 종자를 파종하여 온실에서 10일 동안 재배한 수박 유묘의 뿌리로부터 흙을 제거한 후, 뿌리를 $1.0{\times}10^5-1.0{\times}10^6conidia{\cdot}mL^{-1}$의 포자현탁액에 30분간 침지한 후에 원예용 상토에 이식하고 $25^{\circ}C$에서 하루에 12시간씩 광을 조사하면서 약 3주 동안 재배하는 것을 제안한다.

Keywords

References

  1. Agrios, G.N. 2005. Genetics of plant disease, p. 163-164. In: Plant pathology. 5th ed. Elsevier Academic Press, Burlington, USA.
  2. Chun, J. 1995. Computer-assisted classification and identification of Actinomycetes. PhD Diss., Newcastle Univ., Newcastle upon Tyne, UK.
  3. Cirulli, M. 1972. Variation of pathogenicity in Fusarium oxysporum f. sp. niveum and resistance in watermelon cultivars, p. 491-500. In: Actas III Congr. Un. Fitopatol. Mediterr. Oeiras.
  4. Crall, J.M. 1963. Physiologic specialization in Fusarium oxysporum f. sp. niveum. Phytopathology 53:873.
  5. Elmstrom, G.W. and D.L. Hopkins. 1981. Resistance of watermelon cultivars to Fusarium wilt. Plant Dis. 65:825-827. https://doi.org/10.1094/PD-65-825
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  7. Geiser, D.M., M. Jimenez-Gasco, S. Kang, I. Makalowska, N. Veeraraghavan, T.J. Ward, N. Zhang, G.A. Kuldau, and K. O'Donnell. 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110:473-479. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0
  8. Homa, M., C.S. Shobana, Y.R.B. Singh, P. Manikandan, K.P. Selvam, L. Kredics, V. Narendran, C. Vagvology, and L. Galgoczy. 2013. Fusarium keratitis in South India: causative agents, their antifungal susceptibilities and a rapid identification method for the Fusarium solani species complex. Mycoses 56:501-511. https://doi.org/10.1111/myc.12062
  9. Kwon, Y.S., Y.H. Om, and H.T. Kim. 1998. Identification and distribution of races of Fusarium oxysporum f. sp. niveum on watermelon in Korea. Cucurbit Genet. Coop. Rpt. 21:33-36.
  10. Lee, D.H. 1969. Studies on the control of Fusarium wilt of the cucurbitaceous plants - (1) Investigation on the pathogenicity of Fusarium isolates from the wilted cucurbitaceous plants. Kor. J. Appl. Entomol. 7:69-75.
  11. Leslie, J.F. and B.A. Summerell. 2006. Species description, p. 109. In: The Fusarium laboratory manual. Blackwell Publishing, Ames, USA.
  12. Martyn, R.D. 1987. Fusarium oxysporum f. sp. niveum race 2: a highly aggressive race new to the United States. Plant Dis. 71:233-236. https://doi.org/10.1094/PD-71-0233
  13. Martyn, R.D. 1991. Resistance to races 0, 1, and 2 of Fusarium wilt of watermelon in Citrullus sp. PI-296341-FR. Hortic. Sci. 26:429-432.
  14. Martyn, R.D. 1996. Fusarium wilt of watermelon, p. 11-16. In: T.A. Zitter, D.L. Hopkins, and C.E. Thomas (eds.). Compendium of cucurbit diseases. American Phytopathological Society Press, St. Paul, MN, USA.
  15. Martyn, R.D and B.D. Bruton. 1989. An initial survey of the United States for races of Fusarium oxysporum f. sp. niveum. HortScience 24:696-698.
  16. Martyn, R.D. and R.J. McLaughlin. 1983. Effects of inoculum concentration on the apparent resistance of watermelons to Fusarium oxysporum f. sp. niveum. Plant Dis. 67:493-495. https://doi.org/10.1094/PD-67-493
  17. Nelson, P.E., T.A. Toussoun, and W.F.O. Marasas. 1983. Fusarium species: An illustrated manual for identification. Penn. State Univ. Press, University Park.
  18. Netzer, D. and I. Dishon. 1973. Screening for resistance and physiological specialization of Fusarium oxysporum in watermelon and muskmelon. (Abstr. 941) Second Int. Congr. Plant Pathol., Minneapolis, MN.
  19. Netzer, D. 1976. Physiological races and soil population level of Fusarium wilt of watermelon. Phytoparasitica 4:131-136. https://doi.org/10.1007/BF02980343
  20. Netzer, D. and C. Weintall. 1980. Inheritance of resistance in watermelon to race 1 of Fusarium oxysporum f. sp. niveum. Plant Dis. 64:853-854. https://doi.org/10.1094/PD-64-853
  21. O'Donnell, K.O., E. Cigelnik, and H.H. Casper. 1998. Molecular phylogenetic, morphological, and mycotoxin data support reidentification of the Quorn mycoprotein fungus as Fusarium venenatum. Fungal Genet. Biol. 23:57-67. https://doi.org/10.1006/fgbi.1997.1018
  22. Scott, J.C., T.R. Gordon, D.V. Shaw, and S.T. Koike. 2010. Effect of temperature on severity of Fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae. Plant Dis. 94:13-17. https://doi.org/10.1094/PDIS-94-1-0013
  23. Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  24. Van Poucke, K., S. Monbaliu, F. Munaut, K. Heungens, S. De Saeger, and F. Van Hove. 2012. Genetic diversity and mycotoxin production of Fusarium lactis species complex isolates from sweet pepper. Intl. J. Food Microbiol. 153:28-37. https://doi.org/10.1016/j.ijfoodmicro.2011.10.011
  25. Wagacha, J.M., U. Steiner, H.W. Dehne, S. Zuehlke, M. Spiteller, J. Muthomi, and E.C. Oerke. 2010. Diversity in mycotoxins and fungal species infecting wheat in Nakuru District, Kenya. J. Phytopathol. 158:527-535. https://doi.org/10.1111/j.1439-0434.2009.01653.x
  26. White, T.J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p. 315-322. In: M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White (eds.). PCR protocols: A guide to methods and applications. Academic Press, San Diego.
  27. Zhang, L.X., J.H. Song, J.T. Shen, G.J. Tan, S.S. Li, and F. Ding. 2013. First report of stem canker on phoenix tree (Firmiana simplex) caused by Fusarium oxysporum in China. J. Phytopathol. 161:128-130. https://doi.org/10.1111/jph.12033
  28. Zhang, X.P. and Rhodes, B.B. 1993. Inheritance of resistance to races 0, 1, and 2 Fusarium oxysporum f. sp. niveum in watermelon. Cucurbit Genet. Coop. Rpt. 16:77-78.
  29. Zhou, X.G., K.L. Everts, and B.D. Bruton. 2010. Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing Fusarium wilt in watermelon. Plant Dis. 94:92-98. https://doi.org/10.1094/PDIS-94-1-0092

Cited by

  1. 수박 덩굴쪼김병에 대한 간편 저항성 검정법 확립 vol.23, pp.2, 2015, https://doi.org/10.5423/rpd.2017.23.2.168
  2. 고추 풋마름병에 대한 효율적인 저항성 검정법 확립 vol.23, pp.4, 2015, https://doi.org/10.5423/rpd.2017.23.4.334
  3. An Improved Phenotyping Protocol for Panama Disease in Banana vol.10, pp.None, 2015, https://doi.org/10.3389/fpls.2019.01006
  4. Determination of an Effective Method to Evaluate Resistance of Bottle Gourd Plant to Fusarium oxysporum f. sp. lagenaria vol.29, pp.1, 2015, https://doi.org/10.12791/ksbec.2020.29.1.96
  5. Management of Soil-Borne Fungi and Root-Knot Nematodes in Cucurbits through Breeding for Resistance and Grafting vol.10, pp.11, 2015, https://doi.org/10.3390/agronomy10111641