DOI QR코드

DOI QR Code

A Simple Method for Evaluation of Pepper Powder Color Using Vis/NIR Hyperspectral System

Vis/NIR 초분광 분석을 이용한 고춧가루 색도 간이 측정법 개발

  • Han, Koeun (Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Hoonsoo (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Kang, Jin-Ho (Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Eunah (Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University) ;
  • Oh, Se-Jeong (Hana Seed Ltd.) ;
  • Lee, Yong-Jik (Hana Seed Ltd.) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Kang, Byoung-Cheorl (Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University)
  • 한고은 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 이훈수 (충남대학교 바이오시스템기계공학과) ;
  • 강진호 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 최은아 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 오세정 (농업회사법인 (주)하나종묘) ;
  • 이용직 (농업회사법인 (주)하나종묘) ;
  • 조병관 (충남대학교 바이오시스템기계공학과) ;
  • 강병철 (서울대학교 농업생명과학대학 식물생산과학부)
  • Received : 2014.10.26
  • Accepted : 2015.01.29
  • Published : 2015.06.30

Abstract

Color is one of the quality determining factors for pepper powder. To measure the color of pepper powder, several methods including high-performance liquid chromatography (HPLC), thin layer chromatography (TLC), and ASTA-20 have been used. Among the methods, the ASTA-20 method is most widely used for color measurement of a large number of samples because of its simplicity and accuracy. However it requires time consuming preprocessing steps and generates chemical waste containing acetone. As an alternative, we developed a fast and simple method based on a visible/near infrared (Vis/NIR) hyperspectral method to measure the color of pepper powder. To evaluate correlation between the ASTA-20 and the visible/near infrared (Vis/NIR) hyperspectral methods, we first measured the color of a total of 488 pepper powder samples using the two methods. Then, a partial least squares (PLS) model was postulated using the color values of randomly selected 3 66 samples to predict ASTA values of unknown samples. When the ASTA values predicted by the PLS model were compared with those of the ASTA-20 method for 122 samples not used for model development, there was very high correlation between two methods ($R^2=0.88$) demonstrating reliability of Vis/NIR hyperspectral method. We believe that this simple and fast method is suitable for highthroughput screening of a large number of samples because this method does not require preprocessing steps required for the ASTA-20 method, and takes less than 30 min to measure the color of pepper powder.

색도는 고추의 품질을 결정하는 중요한 요인으로, 색도 측정을 위해 high-performance liquid chromatography(HPLC), thin layer chromatography(TLC), ASTA-20 방법 등이 활용되고 있다. 특히 ASTA-20 방법은 간단하고 정확하게 다수의 시료에 대한 색도 분석을 수행할 수 있다는 장점 덕분에 주로 사용된다. 하지만 전처리 과정에 시간이 많이 소요되고 아세톤과 같은 폐시약이 발생한다. 따라서 본 연구에서는 ASTA-20 방법을 대체하기 위하여 Vis/NIR 초분광 분석법을 활용한 빠른 색도 분석법을 개발하고자 하였다. ASTA-20 방법과 Vis/NIR 초분광 분석법의 상관관계를 분석하기 위하여 총 488점 고춧가루의 색도를 두 가지 방법으로 측정하였다. 이후 무작위로 선발한 366개의 시료를 이용하여 Vis/NIR 초분광 분석법으로 측정한 값으로부터 ASTA 값을 예측하는 부분최소자승법(PLS) 모델을 확립하였다. 모델 개발에 활용하지 않은 122개 시료의 ASTA 값을 PLS 모델을 이용하여 예측하고, ASTA-20 방법으로 측정한 값과 비교해본 결과, 매우 유의성 있는 상관관계($R^2=0.88$)를 나타내 Vis/NIR 초분광 분석법의 신뢰도를 확인할 수 있었다. 따라서 본 연구에서 개발한 간편하고 빠른 ASTA 값 측정 방법은 전처리 단계를 요구하지 않고, 30분 이내에 100개 시료에 대한 분석을 수행할 수 있어 다수의 고춧가루 색도를 빠르게 측정하는데 유용하게 사용될 것으로 기대한다.

Keywords

References

  1. Ahn, C.K., B.K. Cho, C.Y. Mo, and M.S. Kim. 2012. Study on development of non-destructive measurement technique for viability of lettuce seed (Lactuca sativa L) using hyperspectral reflectance imaging. J. Kor. Soc. Nondestruc. Test. 32:518-525. https://doi.org/10.7779/JKSNT.2012.32.5.518
  2. Fox, G. and M. Manley. 2014. Applications of single kernel conventional and hyperspectral imaging near infrared spectroscopy in cereals. J. Sci. Food Agr. 94:174-179. https://doi.org/10.1002/jsfa.6367
  3. Gowen, A., C. Odonnell, P. Cullen, G. Downey, and J. Frias. 2007. Hyperspectral imaging - an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18:590-598. https://doi.org/10.1016/j.tifs.2007.06.001
  4. Hernandez-Ortega, M., A. Ortiz-Moreno, M.D. Hernandez-Navarro, G. Chamorro-Cevallos, L. Dorantes-Alvarez, and H. Necoechea-Mondragon. 2012. Antioxidant, antinociceptive, and antiinflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.). J. Biomed. Biotechnol. 2012:524019.
  5. Kim, S., J.B. Park, and I.K. Hwang. 2002. Quality attributes of various varieties of Korean red pepper powders (Capsicum annuum L.) and color stability during sunlight exposure. Food Chem. Toxicol. 67:2957-2961.
  6. Kim, S., T.Y. Ha, and J. Park. 2008. Characteristics of pigment composition and colour value by the difference of harvesting times in Korean red pepper varieties (Capsicum annuum L.). Int. J. Food Sci. Technol. 43:915-920. https://doi.org/10.1111/j.1365-2621.2007.01542.x
  7. Lee, J.H., T.H. Sung, K.T. Lee, and M.R. Kim. 2004. Effect of gamma-irradiation on color, pungency, and volatiles of Korean red pepper powder. J. Food Sci. 69:585-592. https://doi.org/10.1111/j.1365-2621.2004.tb09904.x
  8. Lee, J.J., K.M. Crosby, L.M. Pike, K.S. Yoo, and D.I. Leskovar. 2005. Impact of genetic and environmental variation on development of flavonoids and carotenoids in pepper (Capsicum spp.). Sci. Hortic. 106:341-352. https://doi.org/10.1016/j.scienta.2005.04.008
  9. Minguez-Mosquera, M.I. and D. Hornero-Mendez. 1993. Separation and quantification of the carotenoid pigments in red peppers (Capsicum annuum L.), paprika, and oleoresin by reversedphase HPLC. J. Agr. Food Chem. 41:1616-1620. https://doi.org/10.1021/jf00034a018
  10. Minguez-Mosquera, M.I., M. Jaren-Galan, and J. Garrido-Fernandez. 1992. Color quality in paprika. J. Agr. Food Chem. 40:2384-2388. https://doi.org/10.1021/jf00024a012
  11. Mo, H.S., K.S. Jang, J.E. Hwang, S.G. Jeon, and B.S. Kim. 2015. Horticultural and chemical quality characterization of accessions selected from four species of Capsicum. Hort. Environ. Biotechnol 56:54-66. https://doi.org/10.1007/s13580-015-0078-0
  12. Rodriguez-Uribe, L., I. Guzman, W. Rajapakse, R.D. Richins, and M.A. O'Connell. 2012. Carotenoid accumulation in orangepigmented Capsicum annuum fruit, regulated at multiple levels. J. Exp. Bot. 63:517-526. https://doi.org/10.1093/jxb/err302
  13. Tepic, A.N., and B.L. Vujicic. 2004. Colour change in pepper (Capsicum annuum) during storage. Acta Period. Technol. 35:59-64.
  14. Wahyuni, Y., A.R. Ballester, E. Sudarmonowati, R.J. Bino, and A.G. Bovy. 2011. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry 72:1358-1370. https://doi.org/10.1016/j.phytochem.2011.03.016
  15. Wold, S., M. Sjostrom, and L. Eriksson. 2001. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58:109-130. https://doi.org/10.1016/S0169-7439(01)00155-1