• Title/Summary/Keyword: Campus Network

Search Result 293, Processing Time 0.022 seconds

A Study on Space Planning for Outdoor rest spaces on the University Campus - Focused on the Preference Analysis about Outdoor rest spaces of K-University Students - (대학 캠퍼스 실외 휴게 공간 계획에 관한 연구 - K대학교 대학생의 실외 휴게 공간 선호도 분석을 중심으로 -)

  • Choi, Ho-Soon
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Nowadays, the concept of outdoor campus is different from the past. U-Campus with a well-developed high-speed computer network is no longer a constraint on the campus interior and exterior spaces. From this point of view, today's large-scale university outdoor spaces need to be changed from a simple green space. The university campus outdoor spaces need to be changed into a new concept space. This study analyzed the changes in academic activities and preferences of college students who are users of university campus outdoor spaces and it is aimed at space planning that reflects the preference. The university campus should be remodified through changes in students' behaviors. Participants in this study were four different departments students (Social science, Physical education, Natural science and Engineering). The preference results of 17 items were analyzed. As a result of this preference analysis, we found that there is a difference in preference among students belonging to four different departments students. In conclusion, this study will propose that the preferences of each college should be considered in planning the outdoor rest spaces of university campus.

Autism Spectrum Disorder Detection in Children using the Efficacy of Machine Learning Approaches

  • Tariq Rafiq;Zafar Iqbal;Tahreem Saeed;Yawar Abbas Abid;Muneeb Tariq;Urooj Majeed;Akasha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.179-186
    • /
    • 2023
  • For the future prosperity of any society, the sound growth of children is essential. Autism Spectrum Disorder (ASD) is a neurobehavioral disorder which has an impact on social interaction of autistic child and has an undesirable effect on his learning, speaking, and responding skills. These children have over or under sensitivity issues of touching, smelling, and hearing. Its symptoms usually appear in the child of 4- to 11-year-old but parents did not pay attention to it and could not detect it at early stages. The process to diagnose in recent time is clinical sessions that are very time consuming and expensive. To complement the conventional method, machine learning techniques are being used. In this way, it improves the required time and precision for diagnosis. We have applied TFLite model on image based dataset to predict the autism based on facial features of child. Afterwards, various machine learning techniques were trained that includes Logistic Regression, KNN, Gaussian Naïve Bayes, Random Forest and Multi-Layer Perceptron using Autism Spectrum Quotient (AQ) dataset to improve the accuracy of the ASD detection. On image based dataset, TFLite model shows 80% accuracy and based on AQ dataset, we have achieved 100% accuracy from Logistic Regression and MLP models.

Student Group Division Algorithm based on Multi-view Attribute Heterogeneous Information Network

  • Jia, Xibin;Lu, Zijia;Mi, Qing;An, Zhefeng;Li, Xiaoyong;Hong, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3836-3854
    • /
    • 2022
  • The student group division is benefit for universities to do the student management based on the group profile. With the widespread use of student smart cards on campus, especially where students living in campus residence halls, students' daily activities on campus are recorded with information such as smart card swiping time and location. Therefore, it is feasible to depict the students with the daily activity data and accordingly group students based on objective measuring from their campus behavior with some regular student attributions collected in the management system. However, it is challenge in feature representation due to diverse forms of the student data. To effectively and comprehensively represent students' behaviors for further student group division, we proposed to adopt activity data from student smart cards and student attributes as input data with taking account of activity and attribution relationship types from different perspective. Specially, we propose a novel student group division method based on a multi-view student attribute heterogeneous information network (MSA-HIN). The network nodes in our proposed MSA-HIN represent students with their multi-dimensional attribute information. Meanwhile, the edges are constructed to characterize student different relationships, such as co-major, co-occurrence, and co-borrowing books. Based on the MSA-HIN, embedded representations of students are learned and a deep graph cluster algorithm is applied to divide students into groups. Comparative experiments have been done on a real-life campus dataset collected from a university. The experimental results demonstrate that our method can effectively reveal the variability of student attributes and relationships and accordingly achieves the best clustering results for group division.

SINR Pricing in Non Cooperative Power Control Game for Wireless Ad Hoc Networks

  • Suman, Sanjay Kumar;Kumar, Dhananjay;Bhagyalakshmi, L.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2281-2301
    • /
    • 2014
  • In wireless ad hoc networks the nodes focus on achieving the maximum SINR for efficient data transmission. In order to achieve maximum SINR the nodes culminate in exhausting the battery power for successful transmissions. This in turn affects the successful transmission of the other nodes as the maximum transmission power opted by each node serves as a source of interference for the other nodes in the network. This paper models the choice of power for each node as a non cooperative game where the throughput of the network with respect to the consumption of power is formulated as a utility function. We propose an adaptive pricing scheme that encourages the nodes to use minimum transmission power to achieve target SINR at the Nash equilibrium and improve their net utility in multiuser scenario.

AN ARTIFICIAL NEURAL NETWORK MODEL FOR THE CONDITION RATING OF BRIDGES

  • Jaeho Lee;Kamal Sanmugarasa;Michael Blumenstein
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.533-538
    • /
    • 2005
  • An outline of an Artificial Neural Network (ANN) model for bridge condition rating and the results of a pilot study are presented in this paper. Most BMS implementation systems involve an extensive range of data collection to operate accurately. It takes many years to effectively implement a BMS using existing methodologies. This is due to unmatched data requirements. Such problems can be overcome by adopting the ANN model presented in this paper. The objective of the proposed model is to predict bridge condition ratings using historical bridge inspection data for effective BMS operation.

  • PDF

Distributed Incremental Approximate Frequent Itemset Mining Using MapReduce

  • Mohsin Shaikh;Irfan Ali Tunio;Syed Muhammad Shehram Shah;Fareesa Khan Sohu;Abdul Aziz;Ahmad Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.207-211
    • /
    • 2023
  • Traditional methods for datamining typically assume that the data is small, centralized, memory resident and static. But this assumption is no longer acceptable, because datasets are growing very fast hence becoming huge from time to time. There is fast growing need to manage data with efficient mining algorithms. In such a scenario it is inevitable to carry out data mining in a distributed environment and Frequent Itemset Mining (FIM) is no exception. Thus, the need of an efficient incremental mining algorithm arises. We propose the Distributed Incremental Approximate Frequent Itemset Mining (DIAFIM) which is an incremental FIM algorithm and works on the distributed parallel MapReduce environment. The key contribution of this research is devising an incremental mining algorithm that works on the distributed parallel MapReduce environment.

Performance Analysis of Blockchain Consensus Protocols-A Review

  • Amina Yaqoob;Alma Shamas;Jawad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.181-192
    • /
    • 2023
  • Blockchain system brought innovation in the area of accounting, credit monitoring and trade secrets. Consensus algorithm that considered the central component of blockchain, significantly influences performance and security of blockchain system. In this paper we presented four consensus protocols specifically as Proof of Work (PoW), Proof of Stake (PoS), Delegated Proof of Stake (DPoS) and Practical Byzantine Fault-Tolerance (PBFT), we also reviewed different security threats that affect the performance of Consensus Protocols and precisely enlist their counter measures. Further we evaluated the performance of these Consensus Protocols in tabular form based on different parameters. At the end we discussed a comprehensive comparison of Consensus protocols in terms of Throughput, Latency and Scalability. We presume that our results can be beneficial to blockchain system and token economists, practitioners and researchers.

CampusQual: A Model of Measuring Foreign Students' Campus Adaptation Level in China - A case study of Korean Students in Tsinghua University - (CampusQual 평가모델을 활용한 외국유학생의 대학생활 적응도 조사 - 중국 청화대학교의 한국유학생들을 중심으로 -)

  • Gu, Xinyue;Wei, Chengguang;Lee, Soosang
    • Journal of Korean Library and Information Science Society
    • /
    • v.46 no.4
    • /
    • pp.511-527
    • /
    • 2015
  • The study aims at constructing adaptation model, CampusQual, to evaluate the services which Tsinghua provides for Korean Students. The study is based on ServQual's "expectation-feeling difference" via conducting a survey on satisfaction on their campus life. We implement a survey including 30 questions in 5 sections: demographic statistics, study & information literacy, campus life, social & culture and regulations. Then through CampusQual model, we analyze the Korean students' adaptation level. CampusQual is a new service model that would enable Korean students to better live and study in universities in China. It also provides feasible suggestions and guidance for administrators on improving campus services for Korean Students.

Wake-up Algorithm of Wireless Sensor Node Using Geometric Probability (기하학적 확률을 이용한 무선 센서 노드의 웨이크 업 알고리즘 기법)

  • Choi, Sung-Yeol;Kim, Sang-Choon;Kim, Seong Kun;Lee, Je-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • Efficient energy management becomes a critical design issue for complex WSN (Wireless Sensor Network). Most of complex WSN employ the sleep mode to reduce the energy dissipation. However, it should cause the reduction of sensing coverage. This paper presents new wake-up algorithm for reducing energy consumption in complex WSN. The proposed wake-up algorithm is devised using geometric probability. It determined which node will be waked-up among the nodes having overlapped sensing coverage. The only one sensor node will be waked-up and it is ready to sense the event occurred uniformly. The simulation results show that the lifetime is increased by 15% and the sensing coverage is increased by 20% compared to the other scheduling methods. Consequently, the proposed wake-up algorithm can eliminate the power dissipation in the overlapped sensing coverage. Thus, it can be applicable for the various WSN suffering from the limited power supply.

Artificial Intelligence (AI)-based Deep Excavation Designed Program

  • Yoo, Chungsik;Aizaz, Haider Syed;Abbas, Qaisar;Yang, Jaewon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.277-292
    • /
    • 2018
  • This paper presents the development and implementation of an artificial intelligence (AI)-based deep excavation induced wall and ground displacements and wall support member forces prediction program (ANN-EXCAV). The program has been developed in a C# environment by using the well-known AI technique artificial neural network (ANN). Program used ANN to predict the induced displacement, groundwater drawdown and wall and support member forces parameters for deep excavation project and run the stability check by comparing predict values to the calculated allowable values. Generalised ANNs were trained to predict the said parameters through databases generated by numerical analysis for cases that represented real field conditions. A practical example to run the ANN-EXCAV is illustrated in this paper. Results indicate that the program efficiently performed the calculations with a considerable accuracy, so it can be handy and robust tool for preliminary design of wall and support members for deep excavation project.