DOI QR코드

DOI QR Code

Performance Analysis of Blockchain Consensus Protocols-A Review

  • Amina Yaqoob (Department of Computer Science and Information Technology, University of Lahore, Gujrat Campus) ;
  • Alma Shamas (Department of Computer Science and Information Technology, University of Lahore, Gujrat Campus) ;
  • Jawad Ibrahim (Department of Computer Science and Information Technology, University of Lahore, Gujrat Campus)
  • Received : 2023.06.05
  • Published : 2023.06.30

Abstract

Blockchain system brought innovation in the area of accounting, credit monitoring and trade secrets. Consensus algorithm that considered the central component of blockchain, significantly influences performance and security of blockchain system. In this paper we presented four consensus protocols specifically as Proof of Work (PoW), Proof of Stake (PoS), Delegated Proof of Stake (DPoS) and Practical Byzantine Fault-Tolerance (PBFT), we also reviewed different security threats that affect the performance of Consensus Protocols and precisely enlist their counter measures. Further we evaluated the performance of these Consensus Protocols in tabular form based on different parameters. At the end we discussed a comprehensive comparison of Consensus protocols in terms of Throughput, Latency and Scalability. We presume that our results can be beneficial to blockchain system and token economists, practitioners and researchers.

Keywords

References

  1. A. Baliga, "Understanding Blockchain Consensus Models," Whitepaper, no. April, pp. 1-14, 2017, [Online]. Available: https://www.persistent.com/wp-content/uploads/2017/04/WPUnderstanding-Blockchain-Consensus-Models.pdf.
  2. B. Mackenzie, B. Mackenzie, X. Bellekens, and R. I. Ferguron, "An assessment of blockchain consensus protocols for the Internet of Things This is the accepted version of a paper presented at the International Conference on Internet of Things , Embedded Systems and Communications ( IINTEC © 2018 IEEE . Personal use of this material is permitted . uses , in any current or future media , including reprinting / An Assessment of Blockchain Consensus Protocols for the Internet of Things," 2018.
  3. A. Altarawneh, F. Sun, R. R. Brooks, O. Hambolu, L. Yu, and A. Skjellum, "Availability analysis of a permissioned blockchain with a lightweight consensus protocol," Comput. Secur., vol. 102, 2021, doi: 10.1016/j.cose.2020.102098.
  4. S. S. Sabry, N. M. Kaittan, and I. M. Ali, "The road to the blockchain technology: Concept and types," Period. Eng. Nat. Sci., vol. 7, no. 4, pp. 1821-1832, 2019, doi: 10.21533/pen.v7i4.935.
  5. A. Gervais, G. O. Karame, K. Wust, V. Glykantzis, H. Ritzdorf, and S. Capkun, "On the security and performance of Proof of Work blockchains," Proc. ACM Conf. Comput. Commun. Secur., vol. 24-28-October-2016, no. April 2019, pp. 3-16, 2016, doi: 10.1145/2976749.2978341.
  6. A. Porat, A. Pratap, P. Shah, and V. Adkar, "Blockchain Consensus : An analysis of Proof-of-Work and its applications .," pp. 1-6, 2017, [Online]. Available: http://www.scs.stanford.edu/17aucs244b/labs/projects/porat_pratap_shah_adkar.pdf.
  7. C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen, and E. Dutkiewicz, "Proof-of-Stake Consensus Mechanisms for Future Blockchain Networks: Fundamentals, Applications and Opportunities," IEEE Access, vol. 7, pp. 85727-85745, 2019, doi: 10.1109/ACCESS.2019.2925010.
  8. F. Yang, W. Zhou, Q. Wu, R. Long, N. N. Xiong, and M. Zhou, "Delegated proof of stake with downgrade: A secure and efficient blockchain consensus algorithm with downgrade mechanism," IEEE Access, vol. 7, pp. 118541-118555, 2019, doi: 10.1109/ACCESS.2019.2935149.
  9. B. Wang, Z. Li, and H. Li, "Hybrid consensus algorithm based on modified proof-of-probability and DPoS," Futur. Internet, vol. 12, no. 8, pp. 1-16, 2020, doi: 10.3390/FI12080122.
  10. A. Li, X. Wei, and Z. He, "Robust proof of stake: A new consensus protocol for sustainable blockchain systems," Sustain., vol. 12, no. 7, pp. 1-15, 2020, doi: 10.3390/su12072824.
  11. W. Mahmood and A. Wahab, "Survey of Consensus Protocols," SSRN Electron. J., no. February, 2020, doi: 10.2139/ssrn.3556482.
  12. "bottleneck of blockchain.pdf." .
  13. Y. Hao, Y. Li, X. Dong, L. Fang, and P. Chen, "Performance Analysis of Consensus Algorithm in Private Blockchain," IEEE Intell. Veh. Symp. Proc., vol. 2018-June, no. Iv, pp. 280-285, 2018, doi: 10.1109/IVS.2018.8500557.
  14. S. Kaur, S. Chaturvedi, A. Sharma, and J. Kar, "A Research Survey on Applications of Consensus Protocols in Blockchain," Secur. Commun. Networks, vol. 2021, 2021, doi: 10.1155/2021/6693731.
  15. N. Chalaemwongwan and W. Kurutach, "State of the art and challenges facing consensus protocols on blockchain," Int. Conf. Inf. Netw., vol. 2018-January, pp. 957-962, 2018, doi: 10.1109/ICOIN.2018.8343266.
  16. N. Chaudhry and M. M. Yousaf, "Consensus Algorithms in Blockchain: Comparative Analysis, Challenges and Opportunities," ICOSST 2018 - 2018 Int. Conf. Open Source Syst. Technol. Proc., pp. 54-63, 2019, doi: 10.1109/ICOSST.2018.8632190.
  17. L. Ismail and H. Materwala, "A review of blockchain architecture and consensus protocols: Use cases, challenges, and solutions," Symmetry (Basel)., vol. 11, no. 10, 2019, doi: 10.3390/sym11101198.
  18. C. Lepore, M. Ceria, A. Visconti, U. P. Rao, K. A. Shah, and L. Zanolini, "A survey on blockchain consensus with a performance comparison of pow, pos and pure pos," Mathematics, vol. 8, no. 10, pp. 1-26, 2020, doi: 10.3390/math8101782.
  19. B. Cao et al., "Performance analysis and comparison of PoW, PoS and DAG based blockchains," Digit. Commun. Networks, vol. 6, no. 4, pp. 480-485, 2020, doi: 10.1016/j.dcan.2019.12.001.
  20. Y. Wu, P. Song, and F. Wang, "Hybrid Consensus Algorithm Optimization: A Mathematical Method Based on POS and PBFT and Its Application in Blockchain," Math. Probl. Eng., vol. 2020, 2020, doi: 10.1155/2020/7270624.
  21. M. Vukolic, T. Quest, B. Fabric, and P. Bft, "The Quest for Scalable Blockchain Fabric : Proof-of-Work vs . BFT Replication Marko Vukolic To cite this version : HAL Id : hal01445797 The Quest for Scalable Blockchain Fabric :," 2017.