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1. INTRODUCTION 

 
The prime objective of bridge asset management is to 

maintain a satisfactory level of safety in bridges with 
optimal life cycle cost. This is a complex task requiring the 
management of conflicting resource requirements. 
Computerised Bridge Management Systems (BMSs) can 
assist to determine the best possible maintenance strategy. 
However, in order to effectively use a BMS, a large amount 
of historical and technical bridge information is required. 
This data must be collected over a period of several years, 
before a BMS can be effectively implemented. 
 

Fundamentally, comprehensive bridge information is 
essential to operate a Bridge Management System (BMS). 
Lack of bridge data is a major problem for many bridge 
agencies as they try to implement the BMS. This study 
aims to resolve the problem and enable the effective 
implementation of a BMS. An efficient methodology for 
extracting information from existing historical data, which 
in most cases are not comprehensive, is of much interest to 
bridge agencies. 
 

This study aims to improve the existing BMS 
implementation process, by resolving insufficient historical 
data problems, using Artificial Neural Networks (ANNs). 
The focus will be on the development of a model to predict 
time series data of bridge elements. This in turn will lead to 
the establishment of a bridge condition rating model. 

 
Preliminary results indicate that the level of accuracy in 

the prediction is satisfactory.   
 
1.1 General background 

The concept of infrastructure asset management is to 

systematically approach maintenance, keeping up-to-date 
bridge information, and cost effective physical operation. 
The activities under those concepts are a combination of 
engineering principles with business practices and 
economic theory to provide tools for effective decision-
making [1]. The following BMS definition is one of those 
available from numerous leading authors to emphasize a 
comprehensive necessity of BMS: 
 
“The goal of bridge management is to determine and 
implement the best possible strategy that ensures an 
adequate level of safety at the lowest possible life-cycle 
cost” [2]  
 
1.2 Necessity of a BMS 

The road transportation network is extremely important 
to national economic and social development. A bridge is 
one of the most crucial elements in transportation networks 
as a functional, valuable, and expensive asset. In terms of 
the bridge aging process, its life cycle cost (LCC) increases 
continually due to its heavy duties such as: increased 
amount of traffic, environmental condition and other direct 
and indirect factors. However, bridges must be durable 
enough at all times to provide satisfactory service so that 
proper maintenance, repair and rehabilitation (MR&R) can 
be carried out. However, in a large bridge network with 
limited maintenance funds, it is difficult to make the right 
decisions as a bridge asset engineer. For that reason, bridge 
asset management techniques have been widely developed 
and used by transportation organizations such as local, 
highway, and railway bridge authorities. Well developed 
management practices and skills can provide an effective 
methodology to assist bridge asset management activities. 
Currently, a systematic BMS has become more popular and 
crucial to effectively manage a large bridge network. 
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1.3 Structure of a BMS 
A component of a computerised bridge management 

system is similar to an ordinary Information System (IS) 
for operation of the business process. However, the BMS is 
not just used to control management processes, it also 
provides future planning, which could not be done in 
conventional computer systems. A typical structure of a 
BMS is shown in Figure 1 and according to the guidelines 
of bridge management systems[3]. It is suggested that the 
system include four essential components such as data 
storage (database (DB)), cost, deterioration and optimi-
sation models for running the system. 

 

 
Figure 1. Typical Structure of BMS [4]. 

 
2. OBJECTIVES AND SCOPE 

 
Although BMS developments over the last decade have 

been remarkable, the system implementation methods are 
still problematic. For that reason, implementing a BMS 
requires the collection of massive amounts of historical 
bridge inspection information and other quality BMS 
relevant data. Bridge inspection data is mainly used to 
calculate the bridge condition rating model. The outcomes 
of this are directly and indirectly linked with other BMS 
modules as input data. According to the summarized 
relationship between the BMS input source and BMS 
outputs, 60 percent of BMS outputs (6 out of 12 project 
level and 12 out of 18 network-level outputs) are affected 
by inspection data. It is evident that the operations of those 
BMS modules are difficult without historical inspection 
information[5]. As a result, many studies have been 
conducted in the field of bridge condition rating models to 
provide better quality bridge condition rating outputs that 
may improve the overall quality of BMS outputs. 

 
Hence, the proposed research is focused on how to 

compute the bridge condition rating as well as resolving 
insufficient data problems by using neural network models 
employing existing historical bridge inspection data. This 
ANN technique has the ability to recognise historical data 
patterns (maintenance patterns) that enable predictions of 
future events. The establishment of this particular model is 
believed to achieve an initial bridge condition rating 
without physical data collections for operating a BMS to 

shorten the BMS implementation period by generating 
required missing bridge elements’ condition rating data. 
 
3. BRIDGE CONDITION RATING MODEL FOR 

 EFFECTIVE BMS IMPLEMENTATION 
 
3.1 Proposed Strategy for BMS Implementation 

This section details the three stages of the proposed BMS 
implementation strategy, shown in Figure 2. The first Phase 
requires the bridge agency to collect available data from a 
specified region of their bridge network. This data can be 
used to build up a basic BMS Database (DB). From the 
collected existing data sets, condition rating-related 
resources will be used as input data in a bridge condition 
rating prediction model. 
 

Bridge condition rating-related data such as bridge 
inspection reports, which possess periodic maintenance 
records, are not comprehensive and thus cannot be used to 
extract the input data required to determine a bridge's 
condition rating. This problem can be overcome by the 
proposed model to predict the condition rating values. The 
condition rating DB in this phase is therefore based on a 
combination of outputs generated from the ANN model and 
the actual data obtained from element-level inspection 
reports. At this stage a trial implementation of a BMS for a 
specific region of the bridge network is possible. 

 
As new and up-to-date inspection data become available, 

the agency can periodically replace predicted data with the 
actual data during Phase II, thus refining the prediction 
model. As more and more actual data gradually replaces the 
predicted data for each bridge, the reliability of the BMS 
database will increase. At this stage the bridge agency 
enters phase III and is in a position to fully adopt a 
commercial BMS package for its entire bridge-network. 
 
 

Phase I
o Collect available data 

from a specific region of 
the bridge agency 

 
o Establish data prediction 

modules 
 
o Establish databases to 

partially operate BMS 
(trial run)  

Phase II 
o For full operation of a 

BMS 
- Establish lists of 

further data 
requirements  

- Establish data 
management methods 

 
o Apply implemented 

methods to other regions 
of the bridge network.  

Phase III

 
 
 
 
o Implementation of BMS 

commercial packages 

 
Figure 2. Proposed Strategy for BMS Implementation 

 
3.2 Why ANNs for BMS Implementation 

Historical bridge inspection data are a major source for 
the bridge condition rating module in a BMS and is a 
significantly important source to produce various BMS 
outputs. Insufficient amounts of these data cause the slow 
adoption of a BMS implementation or in same cases makes 
it impossible to fully implement the BMS. This has been 
reported in many BMS implementation cases worldwide. 
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These typical problems have encouraged more research in 
this field to improve the condition rating module by using 
other bridge information. For example, using bridge 
inventory data[6] and reduction of the number of bridge 
element items[7]  have been used to determine a bridge 
condition rating and its future predictions. Those attempts 
were an expedient method against lacking bridge inspection 
records and minimizing further data collections. This 
minimizing process is only available to element-level type 
of inspection methods. 
 

Historical bridge inspection data were widely used in 
other BMS modules. According to Godart and Vassie[5], 
input data required to satisfy project- and network-level 
outputs are very useful to BMS analysts for tracking the 
input data of a particular model. It provides a relationship 
between the BMS input data-set, which includes historical 
inspection data, and BMS outputs. 60 percent of BMS 
outputs (6 out of 12 project level and 12 out of 18 network-
level outputs) are affected by inspection data. It is evident 
that the operations of those BMS modules are 
extraordinarily difficult without historical inspection 
information. 
 

Consequently, historical bridge inspection records are 
crucial to operate BMSs. Previous research has 
concentrated on the development of particular models by 
using substitution data, instead of inspection data. These 
are not very effective for a fully operational, BMS 
implementation. The proposed ANN model overcomes 
some of the problems encountered. 
 

ANNs have attracted world-wide attention over the last 
decade, because they are simple and effective tools for 
examining data and developing models. It can be used to 
extract patterns or detect trends in data, which are useful 
for future prediction. Many different ANN models have 
been developed to achieve various predictions such as: (1) 
learning to predict events based on observation of patterns 
in historical data; (2) learning to classify unseen data into 
predefined data-sets based on observations in character-
istics of the data; (3) learning to cluster the training data 
into natural groups based on similarity of characteristics [8]. 
 

An Artificial Neural network and its support techniques, 
such as GAs (Genetic Algorithms) and Fuzzy theory, have 
been used in bridge condition rating modules and 
optimisation modules in bridge management systems. Past 
research was mainly focused on improving the accuracy of 
indicated BMS modules, which are based on compre-
hensive bridge information. The rationale of this is to 
prevent the receipt of imprecise results from the system. 
Although neural networks are able to detect historical data 
patterns, it has not been applied to improve BMS imple-
mentation processes. 

Existing BMSs require a large amount of bridge 
information to analyze bridge networks accurately. If the 
existing data in bridge agencies do not match with BMS 
requirements then they need to physically carry out further 
data collections, which require significant time and cost. 
However, by using the proposed ANN model, a satisfactory 
quality level of prediction in bridge condition ratings is 
achieved as if physical data collection were used. 

Accordingly, indicated typical BMS implementation 
problems motivate the use of ANN models to improve the 
efficiency of bridge condition ratings, which is a core part 
of a BMS implementation. 
 
3.3 Process of an ANN model 

The significant advantage of an ANN is that it can 
control many input elements and effectively classify 
different objects. The proposed study uses the back-
propagation algorithm, which is mainly used in non-linear 
engineering problems. The ANN model process consists of 
two steps, training and testing. To perform specific tasks 
using neural networks requires varying the network's 
weights during the training process. The computation of 
this process is an error derivation of the weights between 
the desired output and actual output. All input elements are 
connected to one another by weighted connections [9]. 
 

There are several parameters to consider in the training 
step such as the number of hidden unit(s), hidden layer(s), 
learning rate, and the momentum coefficient. Different 
combinations of those parameters yield different weighting 
factors. The training process can be divided into 2 main 
types, supervised and unsupervised. The supervised 
training process compares the ANN’s actual output with 
that of the desired output until the desired result is obtained 
at a specific combination of parameters (i.e. as in 
backpropagation). The unsupervised training process does 
not require inspection on each result of the weighting factor. 
The network finds out optimal parameters for itself, which 
is convenient when the user is unable to predict the result 
from the network. 

 
3.4 ANN Embedded Bridge Condition Rating Model 

From the 3 phases of implementation strategies in 
Section 3.1, the major technical part is involved in Phase I 
for establishment of a bridge condition rating model using 
an ANN. The condition of each bridge element belongs to 5 
or 6 groups of bridge components, such as superstructure, 
substructure, deck, and slab. A condition rating for the 
element is an interim process to achieve a bridge 
component's condition rating. In the following, Section 4 
mainly focuses on procedures of ANN modeling for future 
bridge element condition rating, using imported historical 
bridge inspection data sets to yield preliminary invest-
igations. 
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Figure 3. Architecture of the Proposed ANN Model for 
Bridge Element Condition Ratings 

4. PRELIMINARY INVESTIGATION 
 
4.1 Historical Bridge Inspection Data for the ANN  

model 
The inspection data was provided by KICT (Korea 

Institute of Construction Technology) for 24 prestressed 
concrete girder bridges. Three bridges, which are simply 
supported one span bridges, have been selected for the pilot 
study. The imported bridge data has been evaluated at 5 
different levels of condition rating such as level A to E. The 
assumptions for the proposed ANN model are as follows: 

 
1. Inspection has been made regularly; 
2. Inspector(s) have equivalent level of knowledge and 

experience so that inspection quality and judgment skills 
are approximately equivalent; 

3. Inspection item(s) have been recorded only for defective 
bridge element(s), hence, the condition of unrecorded 
inspection items are deemed to be in good condition, 
which are at least ranked at level C; 

4. In addition to assumption number 3, supplementary items, 
the unrecorded item(s), will be added by using element-
level inspection items to provide more extensive 
consideration in each of the bridge components in the 
ANN model. 

 
From assumption number 4, the historical inspection data 

has been recorded only for defective element(s) and are not 
comprehensive enough to adopt for the current condition 
rating model. As shown in Table 1, inspected bridge items 
in the imported data did not meet the bridge element-level 
inspection format, which are currently most commonly 
used as a bridge data collection method for BMS operation. 
 

The ANN model is not able to predict future element 
conditions with only defect-based inspection records. It 
requires a conversion process such as the form of a bridge 
element-level inspection to attach supplementary inspection 
items to the sample data, because it helps to obtain more 
extensive historical patterns of each nominated bridge 
element. For example, if the inspection results of a 
particular bridge in a certain year show defect elements 
only in the superstructure and deck, the ANN model is not 
able to predict the condition in other components of the 

bridge elements. Adding the unrecorded bridge items as a 
normal condition rating are important as it sets sufficient 
bridge elements in each component to provide full 
consideration to the ANN model. Therefore, for the ANN 
training stage, this prerequisite process (assumption #4) is 
crucial.  
 

Table 1. Bridge Inspection Items for the ANN Model 
 

Bridge 
components I1 I2 ID inspection items 

Deck A1 B1 1 P.S. Conc. Deck 
A2 B2 2 Strip Seel expension joint 
A3 B3 3 Bridge railing 
A4 4 Approach rail 
A5 5 Approach slab 
A6 B4 6 Bearings 

Other 

B5 7 Drainage 
A7 8 Deck Cracking 
A8 9 Impact damage p.s. 

Smart Flags 

A9 B6 10 Soffit_underside of conc. 
Deck/slab cracking 

A10 11 Abutment_R/C 
A11 B7 12 Wingwalls_R/C 
A12 13 Bent cap 
A13 14 Tie-beam 
A14 B8 15 Column_R/C 
A15 B9 16 Piling 
A16 17 Riprap 

Substructure 

A17 18 Retaining wall 
A18 B10 19 Secondary member 

B11 20 P.S. conc. Beam_mid. point 
Superstructure 

A19

B12 21 P.S. conc. Beam_ends point 
Wearing surface A20 B13 22 Wearing Surface (ACP) 

(Note: I1 represents element-level inspection items and I2 is 
obtained inspection items) 
 

Table 1 shows the list of bridge elements established 
from two different categories such as commonly used in 
element-level type inspections (I1: 22 items, A1~A20) and 
the imported normal inspection information (I2, 13 items, 
B1~B13) for prestressed concrete bridges. 
 

In addition, for the superstructure category, there are two 
different considerations under the same bridge element 
such as the prestress concrete beam (A19). This has been 
considered as two items in the imported data i.e. the “mid 
point” (B11) and “end point of beam” (B12). In this case, 
imported items have more consideration than element level 
inspection items. For the proposed ANN model, item 
number B11 and B12 will be used instead of A19. 
Therefore, the total number of inspection items per bridge 
for sample data of prestressed concrete bridges is 22 
inspection items for the proposed ANN model as given in 
Table 1. 

 
As Figure 4 illustrates, a simple encoding process is 

required in the existing data (currently, evaluated at Levels 
A~E) to convert to numerical values, which can be 
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0.2. The median values in each level will be used in the 
ANN models. For example, for level A (0.8 ~ 1.0) 
evaluations in the actual data, the median value of 0.9 is 
used for the ANN input value. 
 

Defect-based historical 
inspection records

Convert into element-
level inspection format

Prepare input data sets 
for an ANN model

Feed-Forward 
backpropagation model

Accept to use as a 
prediction model until 
new data are obtained

No

Yes

Change 
ANN 

parameters

Increase 
the training 

data size

Compare the 
results with 
existing data

No

 

 
Figure 4. Flow Chart for the Proposed ANN Model 

 
4.2 Proposed ANN model 

The ANN model requires data sets for training (input and 
output) and testing (input). The training input data set 
contains a 6 by 66 matrix; each row is an array of 66 
elements, consisting of 3 years of inspection records (each 
year of inspection has 22 elements). The training output 
data, corresponding to the training inputs, is a 6 by 22 
matrix. Similarly for the testing model, the testing input 
and testing output is a 1 by 66 and 1 by 22 matrix, 
respectively. 
 

In this preliminary investigation, was used up to the 9th 
year of inspection information for the ANN model training 
and then the 10th year of inspection results were compared 
with ANN prediction results. 
 

A feedforward backpropagation algorithm needs manual 
adjustments of parameters such as the number of hidden 
units, learning rate (lr) and momentum coefficient (mc). 
The number of hidden units has been set at 6 through 
experimental tests, which means that the model has optimal 
performance when the network has 6 hidden neurons. The 
best possible combinations of the remaining parameters (lr 
and mc) are timely to determine by using experimental 
selections for optimal network performance. 

 
Hence, all possible cases, 66 combinations of lr (0.0-0.5) 

and mc (0.0-1.0), were examined. The network will 
subsequently display the results of 66 different weighting 

factors. Afterwards, those weighting factors were used in 
the ANN testing model continuously to predict the bridge 
condition ratings. And then the best prediction result and its 
weighting factor was selected, which was used for future 
predictions on a particular bridge until new data was 
obtained. 
 
5. PRELIMINARY RESULTS 
 

528 processing elements for training (396: input and 132: 
output) at each bridge were applied to an ANN-embedded 
bridge element condition rating model to determine the 
weighting factor for future prediction. Three simply 
supported prestressed concrete bridges among the imported 
bridge data were selected for the proposed ANN models. 
Comparisons of the 10th year’s prediction with real data 
and its predictive performance on each bridge are shown in 
Table 2. Performance is measured in percentage ratio of the 
element’s portion and correctly predicted value at each 
level of the original condition rating scale. The best weight 
factor was found in trial prediction number 46 (lr=0.4 and 
mc=0.1) in bridge #10 and 25 (lr=0.2 and mc=0.2) in 
bridge #13. Based on this weighting factor, the 
performance of each network is 81.82 % and 86.31 % in 
bridge #10 and bridge #13 respectively. 
 

Table 2. Overall Predictive Performance 
 

Performance (%) Subjective rating 
Bridge #10 Bridge #13 Bridge #14

Level A (0.81-1.00) 0.00 0.00 4.55 
Level B (0.61-0.80) 40.91 40.91 18.18 
Level C (0.41-0.60) 40.91 45.45 36.36 
Level D (0.21-0.40) - - - 
Level E (0.00-0.20) - - - 

Total 81.82 86.36 59.09 
 
However, the optimal weighting factor for bridge #14 

was found in trial prediction number 9 (lr = 0.0 and mc = 
0.8) for the 10th year’s prediction. This weighting factor 
reflects unsatisfactory prediction results. The overall 
network performance is 59.09 percent. It is not acceptable 
to use for future elements prediction because there are 
many elements predicted inaccurately. The main reason is 
that unexpected maintenance activities were performed in 
year 10 for a number of elements. As a result, the ANN 
model was unable to predict this unusual historical pattern. 

 
For example, element number 6 has a historical 

maintenance pattern for the condition rating from 0.7 (year 
5) to 0.9 (year 6). However, this element has never had a 
condition rating from 0.5 (year 9) to 0.9 (year 10). The 
condition rating 0.5 has not occurred in this element, thus 
triggering the error in the prediction of the 10th year’s 
condition. To solve this problem, two alternative methods 
are suggested: 1. another trial by using an increased 
training data set to obtain a new set of weights; 2. 
adjustment of ANN parameters as shown in Figure 4. 
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(b) Comparison in 11th Year  

Figure 5. Actual Data vs Predicted Data on Bridge #14 
 

The first method was applied to improve prediction 
performance. The input data for training needed to increase 
up to the 10th year's inspection results so that the ANN 
model is able to detect more accurately the maintenance 
behavior of each element. The model can recognise a new 
pattern such as the condition rating from 0.5 (year 9) to 0.9 
(year 10) in element # 6. It provides a better prediction for 
year 11. As a result, the prediction in year 11 can be more 
effectively obtained by using a more comprehensively 
trained network. Also, other elements (1, 3, 7, 12, 16, and 
22) have similar problems as element # 6 in this bridge. 
This can be overcome by increasing the size of the training 
set. As a result, the performance of prediction for year 11 is 
greatly improved and it is acceptable for future element 
conditions in this bridge.  
 
6. CONCLUSION AND FURTHER STUDY 

 
The proposed prediction models were a first step in the 

establishment of bridge condition rating models, which 
provide essential information for BMS operations during 
the implementation period. Difficulties were encountered 
relating to the size of training data sets and selection of 
appropriate ANN parameters. Further studies and a 
comprehensive investigation are required to refine the 
proposed bridge component condition rating model. 

 
Analysing current MR&R strategies of bridge agencies is 

crucial for improving the bridge condition rating model. A 

variety of input information in connection with MR&R 
activities such as risk factors, safety, time, and cost will 
have to be considered. The relationship between bridge 
elements and historical MR&R activities will enable 
condition rating of the bridge components to be developed. 
Case studies will have to be carried out to validate the 
model. 
 

Although further study is required to refine the proposed 
approach, effective use of defect-based bridge inspection 
data for the proposed bridge condition rating model will 
bring a significantly positive effect on current BMS 
implementations. 
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