• Title/Summary/Keyword: Calibration Factor

Search Result 436, Processing Time 0.028 seconds

Uncertainty Analysis of BAG by GNSS Correction (해저지형 표면자료의 GNSS 보정방법에 따른 불확실도 연구)

  • OH, Che-Young;KIM, HO-Yong;LEE, Yun-Sik;CHOI, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • In the recent marine sector, the development and standardization regarding S-100, which is the universal hydrographical data model standard for development of marine space information, was progressed, and for the effectiveness of marine chart production work and the multi-purpose use of water level data in S-100, S-102(Bathymetric Surface grid) standard development and various studies of BAG formats combined with water level and uncertainty, property information is being progressed. Since the water level information that is important in the operation of the ship is provided based on S-102, the calibration method of the location information when producing S-102 is an important factor in deciding the water level. In this study, the hydrographical surveying was conducted by piloting the standardized method for the production of S-102 in Korea, and have compared the accuracy of water level information according to the GNSS post treatment calibration method. As a result of comparing the water level in 2 places in the rocky terrain of the study area, the northern water level of Namu-do was shown as DL 0.79~0.83m, the eastern water level of Daeho-do was DL 12.63~12.91m, and the horizontal position errors of the intermittent sunshine water level were confirmed to be within 1m. As a result, the intermittent sunshine water level according to the location calibration method when producing the BAG was confirmed that it was in the available range for a ship's safe voyage. However, the accuracy verification for the location of the ship when conducting hydrographical surveying was judged that there is a need for a various additional study about regional characteristics and environment factor.

Calculation of Bearing Capacity of Tapered Drilled Shafts in Cohesionless Soils Using Shape Factor (형상계수를 이용한 사질토 지반에 타설된 테이퍼말뚝의 지지력 산정)

  • Paik, Kyu-Ho;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.13-22
    • /
    • 2008
  • Fourteen calibration ehamber tests were performed using one cylindrical and two tapered piles with different taper angles to investigate the changes of the bearing capacity of tapered piles with soil state and taper angle of piles. The results of calibration chamber tests show that the ultimate base resistance of tapered piles increases with increasing mean stress and relative density of soil. It also increases with increasing taper angle for medium sand, but with decreasing taper angle for dense sand. The ultimate shaft resistance of tapered piles increases as vertical and horizontal stresses, relative density and taper angle increase. Based on the results of model pile load tests, a new design method with shape factors for estimation of the bearing capacity of tapered piles is proposed considering the effect of soil state and taper angle on bearing capacity of tapered piles. In order to check the accuracy of predictions calculated using the new method, middle-scale field pile load tests were also conducted on cylindrical and tapered drilled shafts in clayey sand. Comparison of calculated values with measured ones shows that the new design method produces satisfactory predictions tor tapered piles.

Sensitivity of Dimensional Changes to Interfacial Friction over the Definite Range of Friction Factor in Ring Compression Test (링 압축시험에서 마찰인자 구간별 치수 변화의 민감도)

  • Lim, J.Y.;Noh, J.H.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.494-501
    • /
    • 2010
  • The main objective of this study is to examine the sensitivity of calibration curves of FEA of ring compression test to frictional shear factor. Ring compression test has been investigated by measuring dimensional changes at different positions of ring specimen and they include the changes in internal diameter at the middle and top section of the specimen, outer diameter at the middle and top section, surface expansion at the top surface, respectively. Initial ring geometries employed in analysis maintain a fixed ratio of 6 : 3 : 2, i.e. outer diameter : inner diameter : thickness of the ring specimen, which is generally known as 'standard' specimen. A rigid plastic material for different work-hardening characteristics has been modeled for simulations using rigid-plastic finite element code. Analyses have been performed within a definite range of friction as well as over whole range of friction to show different sensitivities to the interfacial friction for different ranges of friction. The results of investigation in this study have been summarized in terms of a dimensionless gradient. It has been known from the results that the dimensional changes at different positions of ring specimen show different linearity and sensitivity to the frictional condition on the contact surface.

Determination of Recombinant Human Epidermal Growth factor (rhEGF) in a Pharmaceutical Preparation by Capillary Electrophoresis

  • Hwang, Kyung-Hwa;Lee, Kang-Woo;Kim, Chang-Soo;Han, Kun;Chung, Youn-Bok;Moon, Dong-Cheul
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.601-606
    • /
    • 2001
  • A simple assay method of recombinant human epidermal growth factor (rhEGF) in a pharmaceutical preparation was studied and validated by capillary electrophoresis (CE) using micellar electrokinetic chromatography (MEKC) techniques. Factors affecting the migration behavior and separation performances of the peptide; type of buffers pH, butler concentration, and concentration of sodium dodecyl sulfates (SDS) were investigated to optimize the analytical performance. CE was performed using running buffers 50.0 mM borate (pH 8.5) containing 12.5 mM SDS at 20 $mutextrm{V}$ of the applied voltage. Calibration curves for the rhEGF showed good linearity (r>0.999) over the wide dynamic range from 1.25 to $100{\mu\textrm{g}}/ml$. Sample analysis was performed by using standard addition method to eliminate the matrix effects of dosage vehicle. This method is assumed to be useful for quality control (QC) of various forms of pharmaceutical products of the peptide.

  • PDF

A study on Broad Quantification Calibration to various isotopes for Quantitative Analysis and its SUVs assessment in SPECT/CT (SPECT/CT 장비에서 정량분석을 위한 핵종 별 Broad Quantification Calibration 시행 및 SUV 평가를 위한 팬텀 실험에 관한 연구)

  • Hyun Soo, Ko;Jae Min, Choi;Soon Ki, Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.20-31
    • /
    • 2022
  • Purpose Broad Quantification Calibration(B.Q.C) is the procedure for Quantitative Analysis to measure Standard Uptake Value(SUV) in SPECT/CT scanner. B.Q.C was performed with Tc-99m, I-123, I-131, Lu-177 respectively and then we acquired the phantom images whether the SUVs were measured accurately. Because there is no standard for SUV test in SPECT, we used ACR Esser PET phantom alternatively. The purpose of this study was to lay the groundwork for Quantitative Analysis with various isotopes in SPECT/CT scanner. Materials and Methods Siemens SPECT/CT Symbia Intevo 16 and Intevo Bold were used for this study. The procedure of B.Q.C has two steps; first is point source Sensitivity Cal. and second is Volume Sensitivity Cal. to calculate Volume Sensitivity Factor(VSF) using cylinder phantom. To verify SUV, we acquired the images with ACR Esser PET phantom and then we measured SUVmean on background and SUVmax on hot vials(25, 16, 12, 8 mm). SPSS was used to analyze the difference in the SUV between Intevo 16 and Intevo Bold by Mann-Whitney test. Results The results of Sensitivity(CPS/MBq) and VSF were in Detector 1, 2 of four isotopes (Intevo 16 D1 sensitivity/D2 sensitivity/VSF and Intevo Bold) 87.7/88.6/1.08, 91.9/91.2/1.07 on Tc-99m, 79.9/81.9/0.98, 89.4/89.4/0.98 on I-123, 124.8/128.9/0.69, 130.9, 126.8/0.71, on I-131, 8.7/8.9/1.02, 9.1/8.9/1.00 on Lu-177 respectively. The results of SUV test with ACR Esser PET phantom were (Intevo 16 BKG SUVmean/25mm SUVmax/16mm/12mm/8mm and Intevo Bold) 1.03/2.95/2.41/1.96/1.84, 1.03/2.91/2.38/1.87/1.82 on Tc-99m, 0.97/2.91/2.33/1.68/1.45, 1.00/2.80/2.23/1.57/1.32 on I-123, 0.96/1.61/1.13/1.02/0.69, 0.94/1.54/1.08/0.98/ 0.66 on I-131, 1.00/6.34/4.67/2.96/2.28, 1.01/6.21/4.49/2.86/2.21 on Lu-177. And there was no statistically significant difference of SUV between Intevo 16 and Intevo Bold(p>0.05). Conclusion Only Qualitative Analysis was possible with gamma camera in the past. On the other hand, it's possible to acquire not only anatomic localization, 3D tomography but also Quantitative Analysis with SUV measurements in SPECT/CT scanner. We could lay the groundwork for Quantitative Analysis with various isotopes; Tc-99m, I-123, I-131, Lu-177 by carrying out B.Q.C and could verify the SUV measurement with ACR phantom. It needs periodic calibration to maintain for precision of Quantitative evaluation. As a result, we can provide Quantitative Analysis on follow up scan with the SPECT/CT exams and evaluate the therapeutic response in theranosis.

Fundamental Investigation of Non-invasive Determination of Alcohol in Blood by Near Infrared Spectrophotometry (근적외선 분광분석법을 이용한 음주측정기술 개발에 관한 연구)

  • Chang, Soo-Hyun;Cho, Chang-Hee;Woo, Young-Ah;Kim, Hyo-Jin;Kim, Young-Man;Lee, Kang-Boong;Kim, Young-Woon;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.375-381
    • /
    • 1999
  • Near infrared spectrophotometry(NIR) was developed as a non-invasive determination of blood alcohol. The first pure alcohol/water samples were prepared with ethanol concentration from 0.01 to 0.1%(w/w). Analysis of the second-derivative data was accomplished with multilinear regression(MLR). The standard error of calibration(SEC) of ethanol in ethanol/water solutions was approximately 0.0039%. The calibration models were established from the blood alcohol spectra by MLR and PLSR analysis. The best calibration was built with the second-derivative spectra of 2266 and 2326 nm by MLR. Second-derivative spectra in the spectral ranges of 1100~1340, 1500~1796 and 2064~2300 nm with four PLSR factors provided the standard error of prediction(SEP) of 0.030%(w/w). These results indicate that NIR may be applied for a fast non-invasive determination of alcohol in the blood.

  • PDF

Robust Semi-auto Calibration Method for Various Cameras and Illumination Changes (다양한 카메라와 조명의 변화에 강건한 반자동 카메라 캘리브레이션 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Recently, many 3D contents have been produced through the multiview camera system. In this system, since a difference of the viewpoint between color and depth cameras is inevitable, the camera parameter plays the important role to adjust the viewpoint as a preprocessing step. The conventional camera calibration method is inconvenient to users since we need to choose pattern features manually after capturing a planar chessboard with various poses. Therefore, we propose a semi-auto camera calibration method using a circular sampling and an homography estimation. Firstly, The proposed method extracts the candidates of the pattern features from the images by FAST corner detector. Next, we reduce the amount of the candidates by the circular sampling and obtain the complete point cloud by the homography estimation. Lastly, we compute the accurate position having the sub-pixel accuracy of the pattern features by the approximation of the hyper parabola surface. We investigated which factor affects the result of the pattern feature detection at each step. Compared to the conventional method, we found the proposed method released the inconvenience of the manual operation but maintained the accuracy of the camera parameters.

Neutron Dose Measurements Using TLDs in a 252Cf Neutron Field (252Cf 중성자장에서 열형광선량계(TLD)를 이용한 중성자 방사선량 측정)

  • Chang, Insu;Kim, Sang In;Lee, Jung Il;Kim, Jang Lyurl;Kim, Bong Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • In case of neutron dose measurement using TLDs (thermo-luminescence dosimeters), because the neutron energy dependence of the TLD is very high, the calibration of the energy response according to the characteristics of the neutron spectrum of workplace is required. In the present study, the ambient dose equivalent rates inside and around the Long-Counter (neutron detector) with narrow and complex inside in the neutron field of $^{252}Cf$ were evaluated. The calibration factors to account for the neutron energy dependence of TLDs were established for both the bare and $D_2O$ modulated $^{252}Cf$ neutron beams, respectively. The values of the TLD's measurement were compared with the computational results of the MCNPX (Monte Carlo N-Particles transport code). When using the two calibration factors of the TLD than a single calibration factor, the measured and the calculated values at the point of verification outside and inside the Long-Counter were in more good agreement. This results show that TLD should be calibrated in the reference neutron field similar to workplace situation.

The Study on the Use of a Cylindrical Ionization Chamber for the Calibration of a 6 MeV Electron Beam (6 MeV 전자 빔의 교정에 원통형 이온함의 사용에 관한 연구)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Choi, Jin-Ho;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.317-323
    • /
    • 2009
  • The standard dosimetry systems based on an absorbed dose to water recommend to use a planeparallel chamber for the calibration of such a low-megavoltage electron beam as a nominal energy of 6 MeV. For this energy ranges of an electron beam a cylindrical chamber should not be used for the routinely regular beam calibration, but the feasibility of the temporary use of a cylindrical chamber was studied to give temporary solutions for special situations users meet. The PTW30013 chambers and the electron beam quality of $R_{50}=2.25\;g/cm^2$ were selected for this study. 10 PTW30013 chambers, a cylindrical type of chamber, were calibrated in KFDA, the secondary standards dosimetry laboratories, and given the absorbed dose-to-water calibration factors, respectively. A "temporary" $k_{Q,Q_0}$ for each chamber were calculated using the absorbed dose determined by a cross-calibrated planeparallel chamber, with the result of an average 0.9352 for 10 chambers. This value for PTW30013 chamber was used to determine an absorbed dose to water at the reference depth. The absorbed doses determined by PTW30013 chambers were in an agreement within 2% with that by ROOS chamber. In a certain situation where a cylindrical chamber be used instead of a planeparellel chamber, the value of 0.9352 might be useful to determine an absorbed dose to water in the same beam quality of electron beam as this study.

  • PDF

The Correlation Analysis and Correction factor of BMD in Forearm and Lumbar with DXA (DXA를 이용한 전완부와 요추부 골밀도 검사의 보정계수 및 상관관계 연구)

  • Han, Man-Seok
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.551-556
    • /
    • 2013
  • The Forearm and the lumbar spine bone mineral density bone mineral density values obtained through, T-score and Z-score correlation between numerical and calibration function obtained as a result of any one part to another part of the results is intended to infer. Groups of 66 patients, 11 patients by age 20-70 were composed of patients measured with the forearm and lumbar spine bone mineral density T-score and Z-score of the survey for each of the three factors that correlated to assess the correlation Find the correction factor to obtain the relationship. Bone mineral density of the correlation coefficient R = 0.769 correction factor is Y = 1.541X + 0.133. T-score of correlation coefficient R = 0.768 and the correction factor Y = 0.715X - 0.4 is Z-score of the correlation coefficient R = 0.635 correction factor Y = 0.751X - 0.162. It is regarded that there will be a clinical availability which can analogize the result of a part by using the result of the other part.