The Journal of the Korea institute of electronic communication sciences
/
v.5
no.1
/
pp.88-92
/
2010
Bottom gate and top gate field-effect transistor based carbon nanotube(CNT) were fabricated by CMOS process. Carbon nanotube directly grown by thermal chemical vapor deposition(CVD) using Ethylene ($C_2H_4$) gas at $700^{\circ}C$. The growth properties of CNTs on the device were analyzed by SEM and AFM. The electrical transport characteristics of CNT FET were investigated by I-V measurement. Transport through the nanotubes is dominated by holes at room temperature. By varying the gate voltage, bottom gate and top gate field-effect transistor successfully modulated the conductance of FET device.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2008.06a
/
pp.234-235
/
2008
The surface flatness of heteroepitaxially grown 3C-SiC thin films is a key factor affecting electronic and mechanical device applications. This paper describes the surface flatness of poly(polycrystalline) 3C-SiC thin films according to Ar flow rates and the geometric structures of reaction tube, respectively. The poly 3C-SiC thin film was deposited by APCVD (Atmospheric pressure chemical vapor deposition) at $1200^{\circ}C$ using HMDS (Hexamethyildisilane : $Si_2(CH_3)_6)$ as single precursor, and 1~10 slm Ar as the main flow gas. According to the increase of main carrier gas, surface fringes and flatness are improved. It shows the distribution of thickness is formed uniformly.
Highly oriented diamond (HOD) films in polycrystalline can be grown on the (100) silicon substrate by microwave plasma CVD. Bias enhanced nucleation (BEN) method was adopted for highly oriented diamond deposition with high nucleation density and uniformity. The substrate was biased up to -250[Vdc] and bias time required for forming a diamond film was varied up to 25 minutes. Diamond was deposited by using $\textrm{CH}_4$/CO and $H_2$ mixture gases by microwave plasma CVD. Nucleation density and degree of orientation of the diamond films were studied by SEM. Thermal conductivity of the diamond films was ∼5.27[W/cm.K] measured by $3\omega$ method.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
1997.11a
/
pp.246-249
/
1997
Diamond thin films were deposited on Si wafer from a mixture of CE$_4$ and H$_2$ by RF Plasma CVD. The films were de77sited under the following conditions : discharge power of 500w, H$_2$ flow rate of 30sccm, chanter pressure of 20∼50Torr, and CH$_4$ concentration of 0.5∼2%. The deposition time was 30∼40 hours because of low growth rate. The deposited films were characterized by Scanning Electron Microscopy and X-ray Diffraction method.
$SiO_2$ and SiON films are formed by Laser CVD for inter-level dielectrics in submicron VLSI. This technique is noticeable that film formation can be done at low temperatures, below $300^{\circ}C$ with less damage. An ArF Excimer Laser with wave length of 193nm is used to excite and dissociate reactant gases. After film formation growth rate, refractive index, I-V curve, and step coverage characteristics of the films were evaluated.
이 실험은 간단한 가열로(heating furnace)를 이용 thermal CVD(chemical Chemical Depositin) 방법을 사용하여, 촉매를 사용하지 않고 실리콘 나노와이어(Si nanowire)를 합성하는 방법에 대해서 연구한 것이다. 굴곡도(roughness)가 큰 알루미나(($Al_{2}O_{3}$) 기판을 사용하여 금(Au)과 같은 촉매를 사용하지 않고 실리콘 나노와이어를 성장시켜 대략 20nm 전후의 지름을 가진 실리콘 나노와이어를 성장시킬 수 있었다. 이 방법은 금을 촉매로 이용하는 방법에 비하여 기판위에 증착되어 성장된 실리콘 나노와이어가 직전성을 가지지 못하고 꼬여있어서 나노와 이어의 분산 과저에서 어려움이 존재하지만 촉매를 사용하지 않기 때문에 성장된 나노와이어에서 촉매를 제거해야하는 어려움을 생략할 수 있고, 기판 위에 촉매를 seeding 하는 작업을 거치지 않고도 20nm 정도의 실리콘 나노와이어를 성장시킬 수 있는 간단한 방법이다.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.9
no.3
/
pp.280-285
/
1999
$\alpha$-$Fe_2O_3$ thin film gas sensors were deposited at various temperature by CVD method. Polycrystalline $\alpha$-$Fe_2O_3$ thin films were deposited at $175^{\circ}C$ and $200^{\circ}C$. $\gamma$-$\alpha$-$Fe_2O_3$ phase was obtained when the deposition temperature was higher than $250^{\circ}C$. The crystallite size of $\alpha$-$Fe_2O_3$ was affected by the deposition and annealing temperature. The specimen deposited at $175^{\circ}C$ showed maximum sensitivity. In this condition, the sensitivity of $\alpha$-$Fe_2O_3$ thin film for NO gas (at 250 ppm) was 3.2 and response time (at 100ppm) was 12 second.
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.232.2-232.2
/
2014
Since its discovery in 2004, graphene, a sp2-hybridized 2-Dimension carbon material, has drawn enormous attention. A variety of approaches have been attempted, such as epitaxial growth from silicon carbide, chemical reduction of graphene oxide and CVD. Among these approaches, the CVD process takes great attention due to its guarantee of high quality and large scale with high yield on various transition metals. After synthesis of graphene on metal substrate, the subsequent transfer process is needed to transfer graphene onto various target substrates, such as bubbling transfer, renewable epoxy transfer and wet etching transfer. However, those transfer processes are hard to control and inevitably induce defects to graphene film. Especially for wet etching transfer, the metal substrate is totally etched away, which is horrendous resources wasting, time consuming, and unsuitable for industry production. Thus, our group develops one-step process to directly grow graphene on glass substrate in plasma enhanced chemical vapor deposition (PECVD). Copper foil is used as catalyst to enhance the growth of graphene, as well as a temperature shield to provide relatively low temperature to glass substrate. The effect of growth time is reported that longer growth time will provide lower sheet resistance and higher VSG flakes. The VSG with conductivity of $800{\Omega}/sq$ and thickness of 270 nm grown on glass substrate can be obtained under 12 min growing time. The morphology is clearly showed by SEM image and Raman spectra that VSG film is composed of base layer of amorphous carbon and vertically arranged graphene flakes.
Park, Min-Ho;Lee, Jae-Uk;Bae, Ji-Hwan;Song, Gwan-U;Kim, Tae-Hun;Yang, Cheol-Ung
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.579-579
/
2012
Graphene has recently been a subject of much interest as a potential platform for future nanodevices such as flexible thin-film transistors, touch panels, and solar cells. And chemical vapor deposition (CVD) and related surface segregation techniques are a potentially scalable approach to synthesizing graphite films on a variety of metal substrates. The structural properties of such films have been studied by a number of methods, including Raman scattering, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). An understanding of the structural quality and thickness of the graphite films is of paramount importance both in improving growth procedures and understanding the resulting films' electronic properties. In this study, we synthesized the few-layered grapheneunder optimized condition to figure out the growth mechanism seen in CVD-grown graphenee by using various electron microscope. Especially, we observed directly film thickness, quality, nucleation site, and uniformity of grpahene by using AEM. The details will be discussed in my presentation.
The Transactions of the Korean Institute of Electrical Engineers C
/
v.49
no.8
/
pp.451-454
/
2000
We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD usign $C_2H_2$ gas. Since the discovery of carbon nanotubes, growth of carbon nanotubes has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is important to flat panel display applications. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. In this paper, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density of catalytic particles reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and each nonotubes are grown in bundle.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.