• Title/Summary/Keyword: CVD(chemical vapor deposition)

Search Result 722, Processing Time 0.032 seconds

3C-SiC/Si 에피층 성장과 Ga 불순물 효과

  • 박국상;김광철;김선중;서영훈;남기석;이형재;나훈균;김정윤;이기암
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.141-144
    • /
    • 1997
  • High quality 3C-SiC epilayer was grown on Si(111) at 125$0^{\circ}C$ using chemical vapor deposition(CVD) technique by pyrolyzing tetramethylsilane(TMS). 3C-SiC epilayer was doped by tetramethylgallium(TMGa) during the CVD growth. The crystallinity of 3C-SiC was significantly enhanced by doping the gallium impurity.

  • PDF

Performance of Thin Film Transistors Having an As-Deposited Polycrystalline Silicon Channel Layer

  • Hong, Wan-Shick;Cho, Hyun-Joon;Kim, Tae-Hwan;Lee, Kyung-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1266-1269
    • /
    • 2007
  • Polycrystalline silicon (poly-Si) films were prepared directly on plastic substrates at a low (< $200^{\circ}C$) by using Catalytic Chemical Vapor Deposition (Cat-CVD) technique without subsequent annealing steps. Surface roughness of the poly-Si layer and the density of the gate dielectric layer were found to be influential to the TFT performance.

  • PDF

Decomposition of Formaldehyde Using TiO$_2$ Photocatalyst Beads by Circulating Fluidized Bed Chemical Vapor Deposition (CFB-CVD법으로 제조된 TiO$_2$ 광촉매 비드를 이용한 포름알데히드의 분해)

  • Kim, Kyoung-Hwan;Kim, Yu-Bong;Lee, Seung-Young;Park, Jae-Hyeon;Lim, Jin-Young;Jung, Sang-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.688-693
    • /
    • 2008
  • TiO$_2$ photocatalyst films deposited beads were prepared by circulating fluidized bed chemical vapor deposition(CFB-CVD) using TTIP(Titanium Tetra Iso-Propoxyde). Photocatalytic activities of Photocatalyst beads were evaluated by decomposition rate of formaldehyde in aqueous solution using a photo-reactor. From the result of photocatalytic degradation of formaldehyde, decomposition rate were shown gradually increased according to the increase of UV intensity, circulating fluid velocity and addition amount of H$_2$O$_2$. However the decomposition rate of formaldehyde were decreased according to the increase of initial concentration and pH value.

Growth of vertically aligned carbon nanotubes on a large area silicon substrates by chemical vapor deposition (CVD 에 의한 대면적 실리콘기판위에서 수직방향으로 정렬된 탄소나노튜브의 성장)

  • Lee, Cheol-Jin;Park, Jeong-Hoon;Son, Kwon-Hee;Kim, Dae-Woon;Lee, Tae-Jae;Lyu, Seung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.860-862
    • /
    • 1999
  • we have grown vertically aligned carbon nanotubes on a large area of Co-Ni codeposited Si substrates by thermal chemical vapor deposition using $C_{2}H_{2}$ gas. The carbon nanotubes grown by the thermal chemical vapor deposition are multi-wall structure, and the wall solace of nanotubes is covered with defective carbons or carbonaceous particles. The carbon nanotubes range from 50 to 120nm in diameter and about $130{\mu}m$ in length at $950^{\circ}C$. The turn-on voltage was about $0.8V/{\mu}m$ with a current density of $0.1{\mu}A/cm^2$ and emission current reveals the Fowler-Nordheim mode.

  • PDF