• Title/Summary/Keyword: CU FILM

Search Result 1,503, Processing Time 0.031 seconds

The adhesion enhancements of Cu metal thin film on plastic substrate by plasma technology (고품질 Cu 박막 형성을 위한 폴리머 기판상 표면처리 기술 연구)

  • Byeon, Eun-Yeon;Choe, Du-Ho;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.148-148
    • /
    • 2016
  • 디스플레이 시장이 rigid에서 flexible로 변화하기 시작하면서 유연 투명전극 소재에 대한 수요가 증가하고 있다. 투명전극으로 대표되는 Indium Tin Oxide(ITO)는 고투과 저저항의 장점을 가지지만 유연성이 떨어져 이를 대체 할 투명전극 소재로 Metal mesh, Ag nano-wire, CNT, Graphene, Conductive polymer 등에 대한 응용 연구가 활발히 진행되고 있다. 본 연구에서는 Metal mesh 용 Cu thin film 형성을 위해 플라즈마 표면처리 기술로 플라스틱 기판과 Cu 박막 사이의 밀착력을 향상시키고자 공정 연구를 수행하였다. 고품질의 Cu thin film 제작을 위해 양산용 roll to roll 장비를 이용하였고, 선형이온소스를 적용하여 플라즈마 표면처리를 수행하였다. 이후 마그네트론 스퍼터링을 통해 Ni buffer layer 및 Cu 박막 증착 공정을 in-situ로 진행하였다. 이러한 공정을 통해 제작한 Cu thin film의 밀착력을 평가하기 위해 cross cut test(ASTM D3359)를 수행하였다. 그 결과 플라스틱 기판과 Cu 금속 박막 사이의 밀착력이 0B에서 5B까지 향상된 것을 확인하였고, 플라즈마 표면처리 공정을 통해서 저항 또한 감소되는 결과를 얻을 수 있었다. 본 연구를 통해 polyethylene terephthalate(PET)뿐만 아니라 polyimide(PI) 기판 상에서도 플라즈마 표면처리를 통해 금속 박막의 밀착력이 향상되는 결과를 확인하였으며, flexible copper clad laminate (FCCL) 같은 유연 정보 소자 분야에 응용 가능할 것으로 기대된다.

  • PDF

Structural and Electrical Properties of $CuInSe_2$ Ternary Compound Thin Film ($CuInSe_2$ 3원 화합물 박막의 전기적 구조적 특성)

  • Kim, Young-Jun;Yang, Hyeon-Hun;Park, Joung-Yun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.258-259
    • /
    • 2005
  • [ $CuInSe_2$ ] thin films were fabricated at various fabrication conditions (substrate temperature, sputtering pressure, BC/RF power, vapor deposition, heat treatment). And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInSe_2$ thin films with stoichiometric composition. $CuInSe_2$ thin film was well made at the heat treatment of 500[$^{\circ}C$] of SLG/Cu/In/Se stacked elemental layer which was prepared by sputter and thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $1.27\sim9.88\times10^{17}[cm^{-3}]$, $49.95\sim185[cm^2/V{\cdot}s]$ and $10^{-1}\sim10^{-2}[\Omega{\cdot}cm]$, respectively

  • PDF

DC Magnetron Sputtering of Cr/Cu/Cr Metal Electrodes for AC Plasma Display panel (DC Magnetron Sputtering 법에 의한 AC Plasma Display panel의 Cr/Cu/Cr 금속전극 제조)

  • 남대현;이경우;박종완
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.704-710
    • /
    • 2000
  • Metal electrode materials for plasma display panel should have low electrical resistivity in order to maintain stable gas discharge and have fast response time. They should also hae good film uniformity adhesion and thermal stability. In this study Cr/Cu/Cr metal electrode structure is formed by DC magnetron sputtering. Cr and Cu films were deposited on ITO coated glasses with various DC power density and main pressures as the major parameters. After metal electrodes were formed a heat treatment was followed at 55$0^{\circ}C$ for 20 min in a vacuum furnace. The intrinsic stress of the sputtered Cr film passed a tensile stress maximum decreased and then became compressive with further increasing DC power density. Also with increasing the main pressure stress turned from compression to tension. After heat the treatment the electrical resistivity of the sputtered Cu film of 2${\mu}{\textrm}{m}$ in thickness prepared at 1 motor with the applied power density of 3.70 W/cm$^2$was 2.68 $\mu$$\Omega$.cm With increasing the main pressure the DC magnetron sputtered Cu film became more open structure. The heat treatment decreased the surface roughness of the sputtered Cr/Cu/Cr metal electrodes.

  • PDF

A Study on properties of $CuInSe_2$ thin films by substrate temperature and annealing temperature (기판온도와 열처리 온도에 따른 $CuInSe_2$ 박막의 특성분석)

  • Kim, Young-Jun;Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.354-355
    • /
    • 2007
  • Process variables for manufacturing the $CuInSe_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions (substrate temperature, sputtering pressure, DC/RF Power), and then by changing a number of vapor deposition conditions and Annealing conditions variously, structural and electrical characteristics were measured. Thereby, optimum process variables were derived. For the manufacture of the $CuInSe_2$, Cu, In and Se were vapor-deposited in the named order. Among them, Cu and In were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC/RF power was controlled so that the composition of Cu and In might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from 100[$^{\circ}C$] to 300[$^{\circ}C$] at intervals of 50[$^{\circ}C$].

  • PDF

Cu2O Thin Film Photoelectrode Embedded with CuO Nanorods for Photoelectrochemical Water Oxidation

  • Kim, Soyoung;Kim, Hyojin
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.258-264
    • /
    • 2019
  • Assembling heterostructures by combining dissimilar oxide semiconductors is a promising approach to enhance charge separation and transfer in photoelectrochemical (PEC) water splitting. In this work, the CuO nanorods array/$Cu_2O$ thin film bilayered heterostructure was successfully fabricated by a facile method that involved a direct electrodeposition of the $Cu_2O$ thin film onto the vertically oriented CuO nanorods array to serve as the photoelectrode for the PEC water oxidation. The resulting copper-oxide-based heterostructure photoelectrode exhibited an enhanced PEC performance compared to common copper-oxide-based photoelectrodes, indicating good charge separation and transfer efficiency due to the band structure realignment at the interface. The photocurrent density and the optimal photocurrent conversion efficiency obtained on the CuO nanorods/$Cu_2O$ thin film heterostructure were $0.59mA/cm^2$ and 1.10% at 1.06 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for visible-light-driven hydrogen generation using a facile, low-cost, and scalable approach of combining electrodeposition and hydrothermal synthesis.

Study point defect and growth for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE) 법에 의한 $CuInSe_2$ 단결정 박막 성장과 점결함 연구)

  • Yu, Sang-Ha;Hong, Gwang-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.152-153
    • /
    • 2007
  • $CuInSe_2$ single crystal thin film was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. After the as-grown $CuInSe_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres, the origin of point defects of $CuInSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Cu}$, $V_{Se}$, $Cu_{lnt}$, and $Se_{lnt}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInSe_2$/GaAs did not form the native defects because In in $CuInSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

The study on characterization and fabrication of current limiting device using HTSC-thick film (고온초전도후막을 이용한 전류제한소자제작 및 특성연구)

  • Lim, Sung-Hun;Kang, Hyeong-Gon;Chung, Dong-Chul;Du, Ho-Ik;Han, Byoung-Sung
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.242-246
    • /
    • 1999
  • For the fabrication of fault current limiting device using HTSC thick film, YBa$_2Cu_3O_x$ superconducting thick film was formed by surface diffusion process of the Y$_2BaCUO_5$ and the mixed compound of (3BaCuO$_2$+2CuO) expected to be liquid phase above the peritectic temperature of YBa$_2Cu_3O_x$. For the surface diffusion, the compounds of 3BaCuO$_2$+2CuO mixed with binder material was patterned on Y$_2BaCUO_5$ substrate by the screen printing method. After proper sintering, the characteristics of current limit on thick film fabricated was measured. The thick film was able to limit the current from 2.8213 mA$_{rms}$nu to 4.2034 mA$_{rms}$ with 500${\omega}$ load resistance, and from 4.1831 mA$_{rms}$ to 4.2150 mA$_{rms}$ with 10${\omega}$ load resistance.

  • PDF

Synthesis of Vertically Aligned CuO Nanorods by Thermal Oxidation (열산화법을 이용한 산화구리 나노선 수직성장)

  • Kim, Jimin;Jung, Hyuck;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of $1{\sim}25{\mu}m$. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.

Electrical Properties of F16CuPC Single Layer FET and F16CuPc/CuPc Double Layer FET

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.174-177
    • /
    • 2007
  • We fabricated organic field-effect transistors (OFETs) based a fluorinated copper phthalocyanine ($F_{16}CuPC$) and copper phthalocyanine (CuPc) as an active layer. And we observed the surface morphology of the $F_{16}CuPC$ thin film. The $F_{16}CuPC$ thin film thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. And we also fabricated the $F_{16}CuPc/CuPc$ double layer FET and with different $F_{16}CuPc$ film thickness devices. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in $F_{16}CuPc$ FET and we calculated the effective mobility. From the double layer FET devices, we observed the higher drain current more than single layer FET devices.

Fabrication and Characterization of Cu3SbS4 Solar Cell with Cd-free Buffer

  • Han, Gyuho;Lee, Ji Won;Kim, JunHo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1794-1798
    • /
    • 2018
  • We have grown famatinite $Cu_3SbS_4$ films by using sulfurization of Cu/Sb stack film. Sulfurization at $500^{\circ}C$ produced famatinite $Cu_3SbS_4$ phase, while $400^{\circ}C$ and $450^{\circ}C$ sulfurization exhibited unreacted and mixed phases. The fabricated $Cu_3SbS_4$ film showed S-deficiency, and secondary phase of $Cu_{12}Sb_4S_{13}$. The secondary phase was confirmed by X-ray diffraction, Raman spectroscopy, photoluminescence and external quantum efficiency measurements. We have also fabricated solar cell in substrate type structure, ITO/ZnO/(Zn,Sn)O/$Cu_3SbS_4$/Mo/glass, where $Cu_3SbS_4$ was used as a absorber layer and (Zn,Sn)O was employed as a Cd-free buffer. Our best cell showed power conversion efficiency of 0.198%. Characterization results of $Cu_3SbS_4$ absorber indicates deep defect (due to S-deficiency) and low shunt resistance (due to $Cu_{12}Sb_4S_{13}$ phase). Thus in order to improve the cell efficiency, it is required to grow high quality $Cu_3SbS_4$ film with no S-deficiency and no secondary phase.