• Title/Summary/Keyword: CT dose reduction

Search Result 165, Processing Time 0.023 seconds

Development and Radiation Shield effects of Dose Reduction Fiber for Scatter ray in CT Exams (피폭선량저감 섬유의 개발과 CT 검사시 산란선 차폐 효과)

  • Kim, Sunghwan;Kim, Yong Jin;Kwak, Jong Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1871-1876
    • /
    • 2013
  • In this study, we developed and characterized the shielding properties of dose reduction fiber (DRF, Buffalo Co.) sheet during brain and chest CT examinations. The DRF sheet was composed of $1{\sim}500{\mu}m$ oxide Bismuth ($Bi_2O_3$) and 5 ~ 50 nm nano-barium sulfate ($BaSO_4$). Phantom and clinical studies were performed for characterization of the DRF shielding properties. In clinical study, we measured doses of eye, chest, abdomen and reproductive system of 60 patients in 3 hospitals during brain and chest CT examinations. We could determined the shielding effect of the DRF by comparing the doses when we used the DRF sheet or not. When we used the sheet during CT examination, the scattered dose were reduced about 20~50%. So, we suggest that the fiber should be used in radiological examinations for reducing patients doses.

Dosimetric Effects of Low Dose 4D CT Using a Commercial Iterative Reconstruction on Dose Calculation in Radiation Treatment Planning: A Phantom Study

  • Kim, Hee Jung;Park, Sung Yong;Park, Young Hee;Chang, Ah Ram
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • We investigated the effect of a commercial iterative reconstruction technique (iDose, Philips) on the image quality and the dose calculation for the treatment plan. Using the electron density phantom, the 3D CT images with five different protocols (50, 100, 200, 350 and 400 mAs) were obtained. Additionally, the acquired data was reconstructed using the iDose with level 5. A lung phantom was used to acquire the 4D CT with the default protocol as a reference and the low dose (one third of the default protocol) 4D CT using the iDose for the spine and lung plans. When applying the iDose at the same mAs, the mean HU value was changed up to 85 HU. Although the 1 SD was increased with reducing the CT dose, it was decreased up to 4 HU due to the use of iDose. When using the low dose 4D CT with iDose, the dose change relative to the reference was less than 0.5% for the target and OARs in the spine plan. It was also less than 1.1% in the lung plan. Therefore, our results suggests that this dose reduction technique is applicable to the 4D CT image acquisition for the radiation treatment planning.

Radiation Exposure Evaluation of Visual Organs using Bismuth Shielding Material on Head CT Scan (두부 CT촬영 시 비스무스 차폐체를 활용한 시각 기관의 방사선피폭평가)

  • Kang, Se-Sik;Kim, Changsoo;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.451-456
    • /
    • 2016
  • To analyse the absorbed radiation dose of the visual organs (eyes, corneas, lenses) during a head CT scan, a with the purpose of radiation protection was designed. Afterwards, the reduction rate of radiation dose when using an eye-shielding was analyzed. The results showed that the higher the energy, the higher the absorbed dose of the eyes. Excluding the head, the organs with high dose were the eyes, corneas, and lenses, respectively. Furthermore, the dose reduction rate before and after shielding was between 38% and 55% for the eyes, and between 35% and 52% for the corneas. In the case of the lenses, when the front was shielded, the reduction rate was 51%, and when the front and the side were shielded simultaneously, the reduction rate was 67%.

Doses of Coronary Study in 64 Channel Multi-Detector Computed Tomography : Reduced Radiation Dose According to Varity of Examnination Protocols (64 채널 Multi-Detector Computed Tomography를 이용한 관상동맥검사의 선량 : 검사 프로토콜 다변화에 따른 환자선량 감소)

  • Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.299-306
    • /
    • 2009
  • Purpose : To compare radiation dose for coronary CT angiography (CTA) obtained with 6 examination protocols such as a retrospectively ECG gated helical scan, a prospectively ECG gated sequential scan, low kVp technique, and cardiac dose modulation technique. Materials and Methods : Coronary CTA was performed by using 6 current clinical protocols to evaluate effective dose and organ dose in primary beam area with anthropomorphic female phantom and glass dosimetric system in 64 channel multi-detector CT. After acquiring topograms of frontal and lateral projection with 80 kVp and 10 mA, main coronary scan was done with 0.35 sec tube rotation time, 40 mm collimation ($0.625\;mm{\times}64\;ea$), small scan field of view (32 cm diameter), 105 mm scan length. Heart beat rate of phantom was maintained 60 bpm in ECG gating. In constant mAs technique 120 kVp, 600 mA was used, and 100 kVp for low kVp technique. In a retrospectively ECG gated helical CT technique 0.22 pitch was used, peak mA (600 mA) was adopted in range of $40{\sim}80%$ of R-R interval and 120mA(80% reduction) in others with cardiac dose modulation. And 210 mAs was used without cardiac dose modulation. In a prospectively ECG gated sequential CT technique data were acquired at 75% R-R interval (middle diastolic phase in cardiac cycle), and 120 msec additional padding of the tube-on time was used. For effective dose calculation region specific conversion factor of dose length product in thorax was used, which was recommended by EUR 16262. Results : The mean effective dose for conventional coronary CTA without cardiac dose modulation in a retrospectively ECG gated helical scan was 17.8 mSv, and mean organ dose of heart was 103.8 mGy. With low kVp and cardiac dose modulation the mean effective dose showed 54.5% reduction, and heart dose showed 52.3% reduction, compared with that of conventional coronary CTA. And at the sequential scan(SnapShot pulse mode) under prospective ECG gating the mean effective dose was 4.9 mSv, this represents an 72.5% reduction compared with that of conventional coronary CTA. And heart dose was 33.8 mGy, this represents 67.4% reduction. In the sequential scan technique under prospective ECG gating with low kVp the mean effective dose was 3.0 mSv, this represents an 83.2% reduction compared with that of conventional coronary CTA. And heart dose was 17.7 mGy, this represents an 82.9% reduction. Conclusion : In coronary CTA at retrospectively ECG gated helical scan, cardiac dose modulation technique using low kVp reduced dose to 50% above compared with the conventional helical scan. And the prospectively ECG gated sequential scan offers substantially reduced dose compared with the traditional retrospectively ECG gated helical scan.

  • PDF

The Study of Influence on Reducing Exposure Dose According to the Applied Flat-panel CT in Extremity Bone SPECT/CT (상·하지 뼈 SEPCT/CT 검사에서 평판형 CT의 피폭저감 영향에 관한 고찰)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.15-24
    • /
    • 2013
  • Purpose: With the demand of SPECT/CT increasing, the interest in complex diagnostic information of CT is rising along with the expansion of various studies on potential performance value. But the study on reduction of exposure dose generated by CT is not being conducted enough. Therefore, in this study, the goal is to identify how much dose reduction exists when performing the extremity bone SPECT/CT using the flat-panel CT. Materials and Methods: The extremity bone SPECT/CT was performed with two equipments -BrightView XCT (Philips Healthcare, Cleveland, USA) and Brilliance 16 CT (Philips Healthcare, Cleveland, USA)-to identify the exposed dose and image quality resulted by changing scan parameter (mAs) applying for both equipment respectively. The noise value of image and spatial resolution were measured with AAPM CT phantom. Tube voltage (kVp) was fixed to 120 kVp, tube current (mAs) calculated at different mA (20, 30, 40, 50, 60, 70, 80) was applied to both equipments respectively. DLP (dose length product) were calculated at the same distance at respective mAs. Also, we acquired images and % contrast with NEMA IEC body phantom to confirm the effect on image. The output of statistics was analyzed by SPSS ver.18. Results: Regarding AAPM phantom, the noise decreased as the tube current (mAs) increased and flat-panel had less noise than Helical CT. This difference increased at lower dose exposure. As to the evaluation of spatial resolution, we can differentiate the space up to 0.75 mm with both equipments. With scan parameter (mA) growing, the value of DLP increased up to 54-216 mGy cm at flat-panel CT and up to 177-709 mGy cm at Helical CT. Regarding NEMA IEC body phantom, same sphere with varied parameter (mA) shows that similar results. Conclusion: There is no significant differences of image quality in both flat-panel and Helical CT when the scan parameter (mA) is changed respectively. Moreover, we can identify the reduction of exposure dose and confirm %contrast analysis value with maintaining image quality. Therefore, at the extremity bone SPECT/CT requiring high spital resolution without the wide ROI, the flat-panel CT is considered to be more useful and it expected to result in the similar image quality with lower exposure dose compared to Helical CT. Additionally, through this study, we expect to help the reduction of the unnecessary exposure dose.

  • PDF

Assessment of the Eye Lens Dose Reduction by Bismuth Shields in Rando Phantom Undergoing CT of the Head (Head CT 검사 시 안구 차폐용 Bismuth사용에 의한 수정체 선량 감소에 대한 평가)

  • Cho, Pyong-Kon;Kim, You-Hyun;Choi, In-Ja;Chang, Sang-Gyu;Chung, Jung-Pyo;Lee, Hyun;Kim, Jang-Seob;Shin, Dong-Cheol;Choi, Jong-Hak;Lee, Ki-Sung;Lee, Won-Ho
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.171-175
    • /
    • 2008
  • The aim of this study is to assess the dose reduction of eye lens and availability of bismuth garments resulting from the use of radioprotective bismuth garments to shield the eyes of patients undergoing head CT. Rando phantom and TLDs were used to determine the amount of dose reduction by bismuth shielding of the eye in the following simulated CT scans : (a) scanning of the head including orbits, (b) scanning of the whole head, and (c) $20^{\circ}$ angled scanning of the head excluding orbits. The average dose reduction of eye lens was 43.2%, 36.0% and 1.4% for the three CT scans listed above. Significant reduction in the eye lens dose was achieved by using superficial orbital bismuth shielding during head CT scans. However, bismuth shields should not be used for the patients when their eyes are excluded from the primarily exposed region.

  • PDF

Correlation Analysis of between Patient and Equipment Factors and Radiation Dose in Chest Low Dose and Abdominal Non-contrast CT (흉부 저선량 및 복부 비조영 CT 검사에서 환자 및 장비 인자와 선량과의 상관관계 분석)

  • Shim, Jina;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.117-123
    • /
    • 2021
  • This paper is to establish a basis for a dose reduction strategy by confirming correlations with the factors that may affect the radiation dose based on the dose records in low-dose chest CT and abdominal non-contrast CT. In order to find out the causes of unnecessary exposure, the correlation between seven factors (age, gender, height, weight, BMI, patient status [inpatient and outpatient], and use of dose modulation) and CT dose were identified. Logistic regression was used as the statistical analysis for correlation verification. In the low dose chest CT, as the higher values of height and BMI and dose modulation off were associated with lowering the risk exceeding Diagnostic Reference Levels(DRL) (odds ration<1, p<0.05). However, as woman compared to man and the higher values of weight were associated with highering the risk exceeding DRL (odds ration>1, p<0.05). In the abdomen CT, as dose modulation off were associated with lowering the risk exceeding DRL (odds ration<1, p<0.05). Therefore It is necessary to conduct research on the relationship between various factors affecting radiation exposure and patient radiation dose for reducing the dose.

Basic Principles of CT Dose Index and Understanding of CT Parameter for Dose Reduction Technique (CT선량지표의 원리와 선량감소 방안에 관한 연구)

  • Kim, Jung-Su;Kwon, Soon-Mu;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2015
  • Computed tomography(CT) using radiation have potential risks. All medical radiographic examinations should require the justification of medical imaging examinations and optimization of the image quality and radiation exposure. The CT examination was higher radiation dose then general radiography. Especially pediatric CT examinations need to great caution of radiation risk. Because of pediatric patient was more sensitive of radiation exposure. Therefore, physician should consider the knowledge of CT radiation exposure indicator information for reduce a needless radiation exposure. This article was aim to understanding of CT exposure indicator, size-specific dose estimates by American Association of Physicists in Medicine (AAPM) report 204, XR 25 and understanding of CT dose reduction technique.

Lens Dose Reduction Methods and Image Quality in Orbital Computed Tomography Scan (안와 전산화단층촬영검사 시 수정체 선량감소 방법과 영상 평가)

  • Moon, Se-Young;Hong, Sang-Woo;Seo, Ji-Sook;Kim, Yeong-Beom;Kwak, Wan-Sin;Lee, Seong-Yeong;Kim, Jung-Soo
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.343-351
    • /
    • 2020
  • This study analyzed dose reduction and quality of images through dose reduction tools and shielding board to protect sensitive eye lens in radiation during orbit CT examinations for clinical data use. During CT scans of the phantom, surface dose (CT scanner dosimetry phantom, ion chamber-3 times) and quality of image (radiosurgery head phantom, visual assessment-2 times, HU standard deviation) were evaluated using X-care which is dose reduction tools and bismuth shielding board. The results of experiments of eight conditions showed a relatively reduced dose in all other conditions compared to when no conditions were set. In particular, the area corresponding to the ophthalmic part reduced the surface dose by up to 45.7 %. The visual evaluation of images by specialists and the quality evaluation of images analyzed by HU standard deviation were clinically closest to the use of X-care and shielding board (1 cm in height). Therefore, it is believed that the use of shielding board in a suitable location with dose reduction tools while investigating the optimal radiation dose will reduce the exposure dose of sensitive lens at radiation while maintaining the quality of the images with high diagnostic value.

The Dose and Risk Reduction from Adoption of Automatic mA Control in 4D CT Scans (자동전류조절기능을 사용한 4D CT 촬영시 선량 및 위험도 저감 효과)

  • Ko, Young Eun;Je, Hyoung Uk;Hwang, Yeon;Park, Sung Ho
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • In this study, the reduction of dose and risk was evaluated from using automatic mA control in 4D CT scan of patients whose organ movement was considered for gated radiotherapy. The organ doses, CTDI, effective doses from 4D CT with and without using automatic mA control were evaluated using CT-Expo program for each 10 patients of liver and lung cancer, and the risk of exposure induced death and loss of life expectancy were evaluated using PCXMC program. It was founded that there were 26.8%, and 15.5% dose reduction in organ doses and CTDI for liver and lung cancer patients and 16.5% and 19.8% risk reduction in liver and lung cancer patients. The organ doses and effective doses were evaluated for the parameter of each patient used in CT scans, and risks considering age and gender could be evaluated. It was founded that there were 21.2% dose reduction and 18.2% risk reduction in 4D CT scan using AEC for liver and lung cancer patients.