• Title/Summary/Keyword: CT dose

Search Result 907, Processing Time 0.027 seconds

The Effect of Therapy Oriented CT in Radiation Therapy Planning (치료 계획용 전산화 단층촬영이 방사선 치료계획에 미치는 효과)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.149-155
    • /
    • 1987
  • The success of radioation therapy depends on exact treatment of the tumor with significant high dose for maximizing local control and excluding the normal tissues for minimizing unwanted complications. To achieve these goals, correct estimation of target volume in three dimension, exact dose distribution in tumor and normal critical structures and correction of tissue inhomogeneity are required. The effect of therapy oriented CT (plannng CT) were compared with conventional simulation method in necessity of planning change, set dose, and proper distribution of tumor dose. Of 365 new patients examined, planning CT was performed in 104 patients $(28\%)$. Treatment planning was changed in $47\%$ of head and neck tumor, $79\%$ of intrathoracic tumor and $63\%$ of abdmonial tumor. in breast cancer and musculoskeletal tumors, planning CT was recommended for selection of adequate energy and calculation of exact dose to critical structures such as kidney or spinal cord. The average difference of tumor doses between CT planning and conventional simulation was $10\%$ in intrathoracic and intra-abdominal tumors but $20\%$ in head and neck tumors which suggested that tumor dose may be overestimated in conventional simulation Although some limitations and disadvantages including the cost and irradiation during CT are still criticizing, our study showed that CT Planning is very helpful in radiotherapy Planning.

  • PDF

Changes in External Radiation Dose Rate for PET-CT Test Patients (PET-CT 검사 환자의 외부 방사선량률 변화)

  • Kim, Su-Jin;Han, Eun-Ok
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.103-107
    • /
    • 2012
  • This paper analyzes changes in the external radiation dose rate of PET-CT test patients as a part of providing basic materials for reduction of radiation exposure to PET-CT test patients. In theory the measurement of external radiation dose rate of PET-CT test patients shows that the further the distance from the patient injected with radioactive pharmaceutical and a longer time elapsement from the injection leads to a smaller amount of radiation. Particularly, the amount of radiation marked the highest in the chest was at 4.17 minutes immediately after the intravenous injection and in the head after 77.47 minutes after urination in advance to the PET-CT test. As in the generalized information, it is desired to keep distance between the patient and caretakers or professionals to reduce the amount of radiation exposure from PET-CT test patients and to resume contact the patient after the time when the radiation has reduced. If contact is unavoidable, it is desired to keep at least 200cm from the patient. In addition, the amount of radiation reached the highest in the chest at first and then in the head from 77 minutes after injection. Accordingly, it would be helpful in achieving the optimization if contact is made based on the patient's physical characteristics. This study is significant as it measures changes in radiation the dose rate by; distance from the PET-CT test patient, time elapsed, and specific parts of body. Further studies based on the findings in this paper are required to analyze changes in radiation dose rate in accordance with individual characteristics unique to PET-CT patients and to utilize the results to reduce the amount of radiation patient, caretakers and professions are exposed.

The Crucial Role of the Establishment of Computed Tomography Density Conversion Tables for Treating Brain or Head/Neck Tumors

  • Yang, Shu-Chin;Lo, Su-Hua;Shie, Li-Tsuen;Lee, Sung-Wei;Ho, Sheng-Yow
    • Progress in Medical Physics
    • /
    • v.32 no.3
    • /
    • pp.59-69
    • /
    • 2021
  • Purpose: The relationship between computed tomography (CT) number and electron density (ED) has been investigated in previous studies. However, the role of these measures for guiding cancer treatment remains unclear. Methods: The CT number was plotted against ED for different imaging protocols. The CT number was imported into ED tables for the Pinnacle treatment planning system (TPS) and was used to determine the effect on dose calculations. Conversion tables for radiation dose calculations were generated and subsequently monitored using a dosimeter to determine the effect of different CT scanning protocols and treatment sites. These tables were used to retrospectively recalculate the radiation therapy plans for 41 patients after an incorrect scanning protocol was inadvertently used. The gamma index was further used to assess the dose distribution, percentage dose difference (DD), and distance-to-agreement (DTA). Results: For densities <1.1 g/cm3, the standard deviation of the CT number was ±0.6% and the greatest variation was noted for brain protocol conditions. For densities >1.1 g/cm3, the standard deviation of the CT number was ±21.2% and the greatest variation occurred for the tube voltage and head and neck (H&N) protocol conditions. These findings suggest that the factors most affecting the CT number are the tube voltage and treatment site (brain and H&N). Gamma index analyses for the 41 retrospective clinical cases, as well as brain metastases and H&N tumors, showed gamma passing rates >90% and <90% for the passing criterion of 2%/2 and 1%/1 mm, respectively. Conclusions: The CT protocol should be carefully decided for TPS. The correct protocol should be used for the corresponding TPS based on the treatment site because this especially affects the dose distribution for brain metastases and H&N tumor recognition. Such steps could help reduce systematic errors.

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

A Study on Usefulness of Clinical Application of Metal Artifact Reduction Algorithm in Radiotherapy (방사선치료 시 Metal artifact reduction Algorithm의 임상적용 유용성평가)

  • Park, Ja Ram;Kim, Min Su;Kim, Jeong Mi;Chung, Hyeon Suk;Lee, Chung Hwan;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Purpose: The tissue description and electron density indicated by the Computed Tomography(CT) number (also known as Hounsfield Unit) in radiotherapy are important in ensuring the accuracy of CT-based computerized radiotherapy planning. The internal metal implants, however, not only reduce the accuracy of CT number but also introduce uncertainty into tissue description, leading to development of many clinical algorithms for reducing metal artifacts. The purpose of this study was, therefore, to investigate the accuracy and the clinical applicability by analyzing date from SMART MAR (GE) used in our institution. Methode: and material: For assessment of images, the original images were obtained after forming ROIs with identical volumes by using CIRS ED phantom and inserting rods of six tissues and then non-SMART MAR and SMART MAR images were obtained and compared in terms of CT number and SD value. For determination of the difference in dose by the changes in CT number due to metal artifacts, the original images were obtained by forming PTV at two sites of CIRS ED phantom CT images with Computerized Treatment Planning (CTP system), the identical treatment plans were established for non-SMART MAR and SMART MAR images by obtaining unilateral and bilateral titanium insertion images, and mean doses, Homogeneity Index(HI), and Conformity Index(CI) for both PTVs were compared. The absorbed doses at both sites were measured by calculating the dose conversion constant (cCy/nC) from ylinder acrylic phantom, 0.125cc ionchamber, and electrometer and obtaining non-SMART MAR and SMART MAR images from images resulting from insertions of unilateral and bilateral titanium rods, and compared with point doses from CTP. Result: The results of image assessment showed that the CT number of SMART MAR images compared to those of non-SMART MAR images were more close to those of original images, and the SD decreased more in SMART compared to non-SMART ones. The results of dose determinations showed that the mean doses, HI and CI of non-SMART MAR images compared to those of SMART MAR images were more close to those of original images, however the differences did not reach statistical significance. The results of absorbed dose measurement showed that the difference between actual absorbed dose and point dose on CTP in absorbed dose were 2.69 and 3.63 % in non-SMRT MAR images, however decreased to 0.56 and 0.68 %, respectively in SMART MAR images. Conclusion: The application of SMART MAR in CT images from patients with metal implants improved quality of images, being demonstrated by improvement in accuracy of CT number and decrease in SD, therefore it is considered that this method is useful in dose calculation and forming contour between tumor and normal tissues.

  • PDF

A Comparative Study on the CT Effective Dose by the Position of Patient's Arm (전신 PET/CT 검사에서 환자의 팔 위치에 따른 CT 유효선량의 비교 연구)

  • Seong, Ji-Hye;Park, Soon-Ki;Kim, Jung-Sun;Park, Seung-Yong;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2012
  • Purpose: In the whole body PET/CT scan, it is natural to lift the patient's arm for its quality improvement. However, when the lesion is located in head and neck, the arms should be located lower. This study was designed to compare the CT effective dose for each arm position applying Automatic Exposure Control (AEC). Materials and Methods: 45 patients who had $^{18}F$-FDG whole body PET/CT scan were studied with Biograph Truepoint 40 (SIEMENS, GERMANY), Biograph Sensation 16 (SIEMENS, GERMANY), Discovery STe 8 (GE healthcare, USA). The CT effective dose of 15 patients for each equipment was measured and comparatively analyzed in both arm-lifted position and lower-arm position. ImPACT v1.0 program was used as the method of measurement for CT effective dose. For the statistics analysis, Paired t-test which paired with SPSS 18.0 statistic program was applied. Results: In the case of arm-lifted, it was measured as $6.33{\pm}0.93mSv$ for Biograph Sensation 16, $8.01{\pm}1.34mSv$ for Biograph Truepoint 40, and $9.69{\pm}2.32mSv$ for Discovery STe 8. When arms are located lower position, it was measure as $6.97{\pm}0.76mSv$, $8.95{\pm}1.85mSv$, $13.07{\pm}2.87mSv$ for each. CT effective dose according to the arm position was 9.2% for Biograph Truepoint 40, 10.5% for Biograph Sensation 16, and 25.9% for Discovery Ste 8. The statistics analysis showed the meaningful difference ($p$<0.05). Conclusion: For the whole body PET/CT case, CT effective dose applying AEC was decreased the radiation exposure of the patients when the arm was lifted for 15.2% of average value. The patient who has no lesion in head and neck would decrease the artifact occurrence in objective part and lower the CT effective dose. Also, for the patient who had lesion in head and neck, the artifact in objective part can be lower by putting the arms down, the fact that CT effective dose increases should be concerned in its whole body PET/CT scan.

  • PDF

Evaluation of Radiation Dose for Dual Energy CBCT Using Multi-Grid Device (에너지 변조 필터를 이용한 이중 에너지 콘빔 CT의 선량 평가)

  • Ju, Eun Bin;Ahn, So Hyun;Cho, Sam Ju;Keum, Ki Chang;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • The paper discusses radiation dose of dual energy CT on which copper modulation layer, is mounted in order to improve diagnostic performance of the dual energy CT. The radiation dose is estimated using MCNPX and its results are compared with that of the conventional dual energy CT system. CT X-ray spectra of 80 and 120 kVp, which are usually used for thorax, abdominal, head, and neck CT scans, were generated by the SPEC78 code and were used for the source specification 'SDEF' card for MCNPX dose modeling. The copper modulation layer was located 20 cm away from a source covering half of the X-ray window. The radiation dose was measured as changing its thickness from 0.5 to 2.0 mm at intervals of 0.5 mm. Since the MCNPX tally provides only normalized values to a single particle, the dose conversion coefficients of F6 tally for the modulation layer-based dual energy CBCT should be calculated for matching the modeling results into the actual dose. The dose conversion coefficient is $7.2*10^4cGy/output$ that is obtained from dose calibration curve between F6 tally and experimental results in which GAFCHORMIC EBT3 films were exposed by an already known source. Consequently, the dose of the modulation layer-based dual energy cone beam CT is 33~40% less than that of the single energy CT system. On the basis of the results, it is considered that scattered dose produced by the copper modulation layer is very small. It shows that the modulation layer-based dual energy CBCT system can effectively reduce radiation dose, which is the major disadvantage of established dual energy CT.

Appendiceal Visualization on 2-mSv CT vs. Conventional-Dose CT in Adolescents and Young Adults with Suspected Appendicitis: An Analysis of Large Pragmatic Randomized Trial Data

  • Jungheum Cho;Youngjune Kim;Seungjae Lee;Hooney Daniel Min;Yousun Ko;Choong Guen Chee;Hae Young Kim;Ji Hoon Park;Kyoung Ho Lee;LOCAT Group
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.413-425
    • /
    • 2022
  • Objective: We compared appendiceal visualization on 2-mSv CT vs. conventional-dose CT (median 7 mSv) in adolescents and young adults and analyzed the undesirable clinical and diagnostic outcomes that followed appendiceal nonvisualization. Materials and Methods: A total of 3074 patients aged 15-44 years (mean ± standard deviation, 28 ± 9 years; 1672 female) from 20 hospitals were randomized to the 2-mSv CT or conventional-dose CT group (1535 vs. 1539) from December 2013 through August 2016. A total of 161 radiologists from 20 institutions prospectively rated appendiceal visualization (grade 0, not identified; grade 1, unsure or partly visualized; and grade 2, clearly and entirely visualized) and the presence of appendicitis in these patients. The final diagnosis was based on CT imaging and surgical, pathologic, and clinical findings. We analyzed undesirable clinical or diagnostic outcomes, such as negative appendectomy, perforated appendicitis, more extensive than simple appendectomy, delay in patient management, or incorrect CT diagnosis, which followed appendiceal nonvisualization (defined as grade 0 or 1) and compared the outcomes between the two groups. Results: In the 2-mSv CT and conventional-dose CT groups, appendiceal visualization was rated as grade 0 in 41 (2.7%) and 18 (1.2%) patients, respectively; grade 1 in 181 (11.8%) and 81 (5.3%) patients, respectively; and grade 2 in 1304 (85.0%) and 1421 (92.3%) patients, respectively (p < 0.001). Overall, undesirable outcomes were rare in both groups. Compared to the conventional-dose CT group, the 2-mSv CT group had slightly higher rates of perforated appendicitis (1.1% [17] vs. 0.5% [7], p = 0.06) and false-negative diagnoses (0.4% [6] vs. 0.0% [0], p = 0.01) following appendiceal nonvisualization. Otherwise, these two groups were comparable. Conclusion: The use of 2-mSv CT instead of conventional-dose CT impairs appendiceal visualization in more patients. However, appendiceal nonvisualization on 2-mSv CT rarely leads to undesirable clinical or diagnostic outcomes.

Evaluation of Adult Lung CT Image for Ultra-Low-Dose CT Using Deep Learning Based Reconstruction

  • JO, Jun-Ho;MIN, Hyo-June;JEON, Kwang-Ho;KIM, Yu-Jin;LEE, Sang-Hyeok;KIM, Mi-Sung;JEON, Pil-Hyun;KIM, Daehong;BAEK, Cheol-Ha;LEE, Hakjae
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • Although CT has an advantage in describing the three-dimensional anatomical structure of the human body, it also has a disadvantage in that high doses are exposed to the patient. Recently, a deep learning-based image reconstruction method has been used to reduce patient dose. The purpose of this study is to analyze the dose reduction and image quality improvement of deep learning-based reconstruction (DLR) on the adult's chest CT examination. Adult lung phantom was used for image acquisition and analysis. Lung phantom was scanned at ultra-low-dose (ULD), low-dose (LD), and standard dose (SD) modes, and images were reconstructed using FBP (Filtered back projection), IR (Iterative reconstruction), DLR (Deep learning reconstruction) algorithms. Image quality variations with respect to varying imaging doses were evaluated using noise and SNR. At ULD mode, the noise of the DLR image was reduced by 62.42% compared to the FBP image, and at SD mode, the SNR of the DLR image was increased by 159.60% compared to the SNR of the FBP image. Based on this study, it is anticipated that the DLR will not only substantially reduce the chest CT dose but also drastic improvement of the image quality.

Dose Reduction Method for Chest CT using a Combination of Examination Condition Control and Iterative Reconstruction (검사 조건 제어와 반복 재구성의 조합을 이용한 흉부 CT의 선량 저감화 방안)

  • Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1025-1031
    • /
    • 2023
  • We aimed to evaluate the radiation dose and image quality by changing the Scout view voltage in low-dose chest CT (LDCT) and applying scan parameters such as AEC (auto exposure control) and ASIR (adaptive statistical iterative reconstruction) to find the optimal protocol. Scout view voltage was varied at 80, 100, 120, 140 kV and after measuring the dose 5 times using the existing low-dose chest CT protocol, the appropriate kV was selected for the study using the Dose report provided by the equipment. After taking a basic LDCT shot at 120 kV, 30 mAs, ASIR 50% was applied to this condition. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed by measuring Background noise (B/N). For dose comparison, CTDIvol and DLP provided by the equipment were compared and analyzed using the formulas. The results indicated that the protocol of scout 140 + LDCT + ASIR 50 + AEC reduced radiation exposure and improved image quality compared to traditional LDCT, providing an optimal protocol. As demonstrated in the experiment, LDCT screenings for asymptomatic normal individuals are crucial, as they involve concerns over excessive radiation exposure per examination. Therefore, applying appropriate parameters is important, and it is expected to contribute positively to the public health in future LDCT based health screenings.