Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing

Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상

  • Kim, Min-Joo (Department of Biomedical Engineering, The Catholic University of Korea College of Medicine) ;
  • Cho, Woong (Department of Biomedical Engineering, The Catholic University of Korea College of Medicine) ;
  • Kang, Young-Nam (Department of Radiation Oncology, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering, The Catholic University of Korea College of Medicine)
  • 김민주 (가톨릭대학교 의과대학 의공학교실) ;
  • 조웅 (가톨릭대학교 의과대학 의공학교실) ;
  • 강영남 (가톨릭대학교 서울성모병원 방사선종양학과) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실)
  • Received : 2012.02.29
  • Accepted : 2012.03.07
  • Published : 2012.03.31

Abstract

The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

적응 방사선 치료(Adaptive Radiation Therapy, ART)를 실행하기 위한 매 치료 마다 획득되는 Megavoltage cone-beam CT (MVCBCT) 영상을 이용한 재 선량 계산 과정은 필수적이다. 본 연구의 목적은 intensity 보정 방법을 적용한 MVCBCT 영상 기반의 선량 계산 결과와 kilo-voltage CT (kV CT) 영상 기반의 선량 계산 결과의 비교 및 MVCBCT 영상 기반의 선량계산 정확성의 향상이다. MVCBCT 영상의 intensity 교정을 위해 kV CT와 MVCBCT을 이용하여 12 종류의 전자밀도 바를 제공하는 Cheese 팬텀 영상을 획득하고, Cheese 팬텀 영상의 동일한 전자밀도 바에서 표현되는 kV CT 영상과 MVCBCT 영상의 intensity 관계를 도출하였다. 이후 kV CT, MVCBCT를 이용한 Rando 팬텀 영상을 획득하여 MVCBCT 영상은 3차원 강체 정합을 수행하였고 본 과정을 통해 MVCBCT 영상은 kV CT 영상과 마치 동일한 모달리티에서 획득한 영상과 같은 위치 및 intensity 분포로 변환되었고, MVCBCT 영상의 잡음을 없애기 위한 Gaussian smoothing 필터를 적용하였다. 위의 과정을 거친 MVCBCT 영상을 토대로 intensity 교정을 적용한 영상과, intensity 교정을 적용하지 않은 영상, kV CT영상을 기반으로 방사선 치료 계획 시스템을 이용한 선량 계산을 시행 하였다. 선량 계산의 결과는 선량 분포의 차이 및 Percentage difference로 평가되었다. Intensity 보정을 적용한 MVCBCT 영상의 선량 계산 결과의 경우 kV CT 영상 기반의 선량 계산 결과와의 Percentage difference가 두경부 영상의 경우 1.08%, 흉부 영상의 경우 2.44%였다. 본 연구에서 적용한 intensity 변환을 통해 MVCBCT 영상을 이용한 선량 계산의 정확성이 향상됨을 확인하였고, 본 연구 방법은 실제 선량 계산에 적용 및 사용의 편리성을 확인하였다. 차후 연구 계획도 본 연구 내용에 의해 제안되었다.

Keywords

References

  1. Morin O, Chen J, Aubin M, et al: Dose calculation using megavoltage cone-beam CT. Int J Radiation Oncology Biol Phys 67:1201-1210 (2007) https://doi.org/10.1016/j.ijrobp.2006.10.048
  2. Ruchala K, Olivera G, Schloesser E, et al: Calibration of a tomotherapeutic MVCT system. PMB 45:N27-N36 (2000)
  3. Deshan Y, Summer RC, S Murty, et al: Deformable registration of abdominal kilovoltage treatment planning CT and tomotherapy daily megavoltage CT for treatment adaptation. Med Phys 36:329-338 (2009) https://doi.org/10.1118/1.3049594
  4. Weiguo L, Gustavo H O, Quan C, et al: Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy. Phys Med Biol 51:4357-4373 (2006) https://doi.org/10.1088/0031-9155/51/17/015
  5. Jerry B, Adam S, Kian A, et al: Quantification of volumetric and geometric changes occuring during fractionated radiotherapy for head-and-neck cancer using an intergrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys 59:960-970 (2004) https://doi.org/10.1016/j.ijrobp.2003.12.024
  6. Hansen EK, Bucci MK, Quivey JM, et al: Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 64:355-362 (2006) https://doi.org/10.1016/j.ijrobp.2005.07.957
  7. Aubry J, Pouliot J, Beaulieu B: Correction of megavoltage cone-beam CT images for dose calculation in the head and neck region. Med Phys 35:900-907 (2008) https://doi.org/10.1118/1.2839146
  8. Pouliot J: Megavoltage imaging, megavoltage cone beam CT and dose-guided radiation therapy. Radiat Ther Oncol Basel Karger 40:132-142 (2007)
  9. Yong Y, Eduard S, Tianfang L, et al: Evaluation of onboard kV cone beam CT (CBCT)-based dose calculation. Phys Med Biol 52:685-705 (2007) https://doi.org/10.1088/0031-9155/52/3/011
  10. Joan H, Boyd Mc, Peter BG: Cone beam computerized tomography: the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy. Phys Med Biol 54:N329-346 (2009) https://doi.org/10.1088/0031-9155/54/15/N01
  11. IAEA TECDOC 1583: Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques - Report of the Coordinated Research Project (CRP) on development of procedures for quality assurance of dosimetry calculations in radiotherapy. 2009
  12. Christopher L, Zavgorodni S: Vega library for processing DICOM data required in Monte Carlo verification of radiotherapy treatment plans. Australas Phys Eng Sci Med 31:290-299 (2008) https://doi.org/10.1007/BF03178598
  13. Cheng BS, Aliphonse L, Krishna K, et al: Determination of CT to density conversion for relationship for image-based treatment planning systems. Med Dosi 30:145-148 (2005) https://doi.org/10.1016/j.meddos.2005.05.001
  14. Thomas SJ: Relative electron density calibration of CT scanners for radiotherapy treatment planning. Br J Radiol 72:781-786 (1999)
  15. Seco J, Evans PM: Assessing the effect of electron density in photon dose calculations. Med Phys 25:656-661 (2006)