Paying Back to Good Deeds: A Text Mining Approach to Explore Don-jjul as Pro-consumption Behavior
-
- Asia Marketing Journal
- /
- v.26 no.2
- /
- pp.104-128
- /
- 2024
More consumers are choosing pro-consumption for social change, but scholars know little about why and how consumers engage in pro-consumption behaviors. A newly emerged pro-consumption behavior called "Don-jjul," which appeared during the COVID-19 pandemic in South Korea, refers to compensating businesses that have engaged in altruistic actions by boosting their sales. This study used Latent Dirichlet Allocation (LDA) of topic modeling, sentiment analysis, and in-depth interviews to investigate the perceptions, motivations, and emotions regarding Don-jjul. As a result, the study revealed pro-consumers' perceptions of Don-jjul as "collective pro-consumption for contributing to social well-being." Don-jjul has two main motives: "supporting underdogs with difficulties" and "compensating good businesses economically." We also found two ambivalent emotions evoked by Don-jjul: "respect for good business owners" and "concerns regarding the misuse of Don-jjul." The results contribute to pro-consumption research for social well-being, providing business opportunities for retailers and CSR managers with a deep understanding of pro-consumers.
From January 2020 to October 2021, more than 500,000 academic studies related to COVID-19 (Coronavirus-2, a fatal respiratory syndrome) have been published. The rapid increase in the number of papers related to COVID-19 is putting time and technical constraints on healthcare professionals and policy makers to quickly find important research. Therefore, in this study, we propose a method of extracting useful information from text data of extensive literature using LDA and Word2vec algorithm. Papers related to keywords to be searched were extracted from papers related to COVID-19, and detailed topics were identified. The data used the CORD-19 data set on Kaggle, a free academic resource prepared by major research groups and the White House to respond to the COVID-19 pandemic, updated weekly. The research methods are divided into two main categories. First, 41,062 articles were collected through data filtering and pre-processing of the abstracts of 47,110 academic papers including full text. For this purpose, the number of publications related to COVID-19 by year was analyzed through exploratory data analysis using a Python program, and the top 10 journals under active research were identified. LDA and Word2vec algorithm were used to derive research topics related to COVID-19, and after analyzing related words, similarity was measured. Second, papers containing 'vaccine' and 'treatment' were extracted from among the topics derived from all papers, and a total of 4,555 papers related to 'vaccine' and 5,971 papers related to 'treatment' were extracted. did For each collected paper, detailed topics were analyzed using LDA and Word2vec algorithms, and a clustering method through PCA dimension reduction was applied to visualize groups of papers with similar themes using the t-SNE algorithm. A noteworthy point from the results of this study is that the topics that were not derived from the topics derived for all papers being researched in relation to COVID-19 (