• Title/Summary/Keyword: CO removal

Search Result 1,580, Processing Time 0.031 seconds

Removal of Gaseous Toluene using a Plate-type Dielectric Barrier Discharge Reactor (평판형 전극으로 구성된 유전체 배리어 방전 반응기를 이용한 톨루엔 저감 특성)

  • Park, Jae-Hong;Jo, Yoon-Shin;Yoon, Ki-Young;Byeon, Jeong-Hoon;Hwang, Jung-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.641-648
    • /
    • 2008
  • A plate-type dielectric barrier discharge (DBD) reactor was designed and tested for removal of gaseous toluene. The DBD reactor consisted of 9 parallel plate electrodes, four of which were grounded. An AC voltage of rectangular waveform ($5{\sim}8.5kV$, $60{\sim}1,000Hz$), was applied to the other five electrodes. The gaseous toluene passed through the DBD reactor and its concentration was measured by a real-time gas analyzer. The carbon monoxide (CO) and carbon dioxide ($CO_2$) which were produced by decomposition of toluene in the DBD reactor, were sampled and analyzed by a micro gas chromatography. The maximum toluene removal efficiency was 51.4%.

Evaluation on Removal of Organics and Nutrients from Reverse Osmosis Concentrate using Activated Carbon (활성탄을 이용한 역삼투 농축수의 유기물 및 영양염류 제거 평가)

  • Joo, Sung Hee;Park, Jong Min;Lee, Yang Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.479-482
    • /
    • 2012
  • Membrane process has been one of the widely applied wastewater treatment options, especially in field. However, one of the tricky issues in the process is to treat concentrates generated from reverse osmosis (RO) system in a manner of saving cost with maximum efficiency for treating a wide range of contaminants. Stimulated with the challenging issues, we have conducted a series of experimental studies in the evaluation for removing organics and nutrients using activated carbon. Results indicated that while powdered activated carbon (PAC) efficiently removed organics and the extent of removal was proportional to the PAC dosage, little removal of nitrogen and phosphorus was observed despite increasing the PAC dose. Interestingly, applying PAC was superior in removing organics than using granular activated carbon (GAC). These results suggest smaller particle size with higher surface area could provide greater chemical reactivity in removing organics.

Development of Tungsten CMP (Chemical Mechanical Planarization) Slurry using New Abrasive Particle (새로운 연마입자를 이용한 텅스텐 슬러리 개발)

  • Yu, Young-Sam;Kang, Young-Jae;Kim, In-Kwon;Hong, Yi-Koan;Park, Jin-Goo;Jung, Seok-Jo;Byun, Jung-Hwan;Kim, Moon-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.571-572
    • /
    • 2006
  • Tungsten CMP needs interconnect of semiconductor device ULSI chip and metal plug formation, CMP technology is essential indispensable method for local planarization. This Slurry development also for tungsten CMP is important, slurry of metal wiring material that is used present is depending real condition abroad. It is target that this research makes slurry of efficiency that overmatch slurry that is such than existing because focus and use colloidal silica by abrasive particle to internal production technology development. Compared selectivity of slurry that is developed with competitor slurry using 8" tungsten wafer and 8" oxide wafer in this experiment. And removal rate measures about density change of $H_2O_2$ and Fe particle. Also, corrosion potential and current density measure about Fe ion and Fe particle. As a result, selectivity find 83:1, and expressed similar removal rate and corrosion potential and current density value comparing with competitor slurry.

  • PDF

Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent (암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업영역에 미치는 영향)

  • You, Jong Kyun;Park, Ho Seok;Hong, Won Hi;Park, Jongkee;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.258-263
    • /
    • 2007
  • Ammonia water was investigated as a new absorbent of the chemical absorption process for the removal of $CO_2$ in flue gas. The suitable range of ammonia water concentration and $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) were decided in the point of view of $CO_2$ absorption capacity and $NH_4HCO_3$ precipitation. The absorption capacity of $CO_2$ and the precipitation of $NH_4HCO_3$ in liquid phase were calculated by the Pitzer model for electrolyte solution. The $CO_2$ absorption capacity of the ammonia water over $5\;molNH_3/kgH_2O$ was higher than that of conventional amine absorbent. The $CO_2$ loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of $5-14\;molNH_3/kgH_2O$ at 293, 313 K. The absorber for the removal of $CO_2$ in flue gas could be operated without $NH_4HCO_3$ precipitation by using high concentration of ammonia water below these $CO_2$ loading values. The optimum temperature of the ammonia water absorbent for removal of $CO_2$ in flue gas was 297-312 K depending on the concentration of ammonia water.

A Study on the Removal of Refractory Organic Matter in Leachate sampled at Kimpo Landfill by means of Fenton Oxidation Process (Fenton 산화를 이용한 김포매립지 침출수내 난분해성)

  • 정동환;조일형;김익수;한인규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.49-57
    • /
    • 2000
  • This study was carried out to find the optimal condition to treat refractory organic matter which can’t treat clearly with biological treatment and to find the optimal division dosage and division dose timing in the modification of Fenton oxidation which is used resolve the problem that hydrogen peroxide is too expensive. The results are following; 1. The highest TOC removal efficiency was 41% and color removal efficiency was 64% when the dilution magnitude of leachate is fold. This suggests that dilution is efficiency when high concentration of leachate is treated. 2. The removal efficiency of TOC and color increased up to the molar ratio between ferrate and hydrogen peroxide was 1:1. However above that ratio, removal efficiency hardly increased. The highest removal efficiency of TOC and color were 38% and 71% when the mole ratio of ferrate to hydrogen peroxide was 1.5:1. 3. When the mole ratio between ferrate and hydrogen peroxide was fixed, the removal efficiency of TOC and color increased as the dosage of hydrogen peroxide increased. 4. pH of samples were adjusted at pH 3, 5, 7, 9, 11. After oxidation reaction, pH of samples were dropped to 2.59, 2.54, 5.34, 6.36 and 9.68. The highest color removal efficiency was 75.7% when initial pH was at pH 7. 5. The removal of TOC and color was ended within 10. min. and the removal efficiency increased logarithmically within 10min. However after 10 min., the removal efficiency of hardly increased. 6. The color removal efficiency was higher with modification of fentone oxidation than that with fentone oxidation by 5%. Optimal division dosage ratio was 1:1 and optimal dose timing ratio was 2:1. However the TOC removal efficiency was not higher with modification of Fenton oxidation than that with Fenton oxidation.7. The CO $D_{Mn}$ /BO $D_{5}$ Ratio decreased with the time went by. It meant bioresolution increased as time went by. However, after 15 min., the CO $D_{Mn}$ /BO $D_{5}$ Ratio did not decrease any more. 8. In the case of $H_2O$$_2$ Divisiom Dose experiment, the increase of bioresolution was highest at the $H_2O$$_2$ Division dosage Ratio of 3:7.3:7.

  • PDF

A Study on Characterization and Modeling of Shallow Trench Isolation in Oxide Chemical Mechanical Polishing

  • Kim, Sang-Yong;Chung, Hun-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.3
    • /
    • pp.24-27
    • /
    • 2001
  • The end point of oxide chemical mechanical polishing (CMP) have determined by polishing time calculated from removal rate and target thickness of oxide. This study is about control of oxide removal amounts on the shallow trench isolation (STI) patterned wafers using removal rate and thickness of blanket (non-patterned) wafers. At first, it was investigated the removal properties of PETEOS blanket wafers, and then it was compared with the removal properties and the planarization (step height) as a function of polishing time of the specific STI patterned wafers. We found that there is a relationship between the oxide removal amounts of blanket and patterned wafers. We analyzed this relationship, and the post CMP thickness of patterned wafers could be controlled by removal rate and removal target thickness of blanket wafers. As the result of correlation analysis, we confirmed that there was the strong correlation between patterned and blanket wafer (correlation factor: 0.7109). So, we could confirm the repeatability as applying for STI CMP process from the obtained linear formula. As the result of repeatability test, the differences of calculated polishing time and actual polishing time was about 3.48 seconds. If this time is converted into the thickness, then it is from 104 $\AA$ to 167 $\AA$. It is possible to be ignored because process margin is about 1800 $\AA$.

  • PDF

Evaluation of high concentration carbon dioxide reduction efficiency using L-alanine·salt scrubber in Liquor factory (주류공정 내 L-alanine·염 스크러버를 이용한 고농도 이산화탄소 저감 효율 평가)

  • Kim, Heung-Rae;Lee, June-Hyung;Park, Hyung-June;Park, Ki-Tae;Park, Il-Gun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.214-223
    • /
    • 2020
  • This study evaluated CO2 removal efficiency, monitoring data analysis / evaluation efficiency and energy reduction efficiency in the liquor factory by L-alanine applied scrubber. The average removal rate of the scrubber was 90.45%, and it was confirmed that the removal efficiency was excellent above 10,000ppm of inlet CO2 concentration. After the scrubber operation, the CO2 concentration in the workplace was maintained under 2,000ppm(the carbon dioxide reduction efficiency was about 74%). and the energy saving efficiency was calculated to 7.26% by reducing the power consumption. As a result of applying the developed product, it was possible to improve the working environment of workers by reducing the carbon dioxide concentration in the workplace at low concentration without ventilation, and to reduce the energy consumption. Therefore, it is expected that the scrubber will be useful as a high CO2 removal process in food and liquor factories.

Research on Desulfurization and Dust Removal Characteristics in Oxy-PC Combustion system (순산소 석탄연소 시스템에서의 탈황·집진 기초 특성)

  • Min, Tai Jin;Keel, Sang In;Yun, Jin Han;Roh, Seon Ah;Han, Bang Woo;Lee, Hyung Keun;Kim, Sang Soo;Lee, Kang Soo;Seo, Sang Il;Kim, Young Ju
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.116-120
    • /
    • 2010
  • $CO_2$ is regarded as one of the greenhouse gases(GHG), which is the main reason of climate change. In order to achieve lower $CO_2$ emissions, several efforts have been conducted worldwide. $CO_2$ capture & storage(CCS) technology development is needed for a coal-fired combustion power plant because of huge $CO_2$emission. Oxy fuel combustion, one of the CCS technologies has been considered as a primary concern, nowadays. Oxy-fuel combustion needs flue gas recirculation(FGR) for stable operation and enrichment of $CO_2$ concentration in the flue gas. FGR adoption for oxy-fuel combustion requires development of effective desulfurization and dust removal technology. In this study, desulfurization characteristics of lime and dust removal technology have been researched in the laboratory scale coal combustor.

Charateristics of Akalophilic Microorganism Developed for Color Removal of Dye (염료의 색도 제거를 위해 개발된 호알칼리성 미생물의 특성)

  • Lee, Hyun-Wuk;Lim, Dong-Joon
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.145-154
    • /
    • 2010
  • An alkalophilic microorganism capable of degrading dyes was developed for the treatment of alkaline dye solution. This strain was identified as Pseudomonas species. Using this microorganism, biological treatment of dye was studied in Erlenmeyer flasks. The characteristics of this microorganism were observed under various incubating-condition such as temperature, pH, nitrogen source, and macronutrients concentration. The removal effciencies of Disperse Red 60 from synthetic wastewater were 33.5 ~ 36.9% at the range of $30{\sim}40^{\circ}C$, and they were 31.1 ~ 36.7% at the range of initial pH 8 ~ pH 10, respectively. The optimal culture medium was found to be 0.25%(w/v) yeast extract, 0.25%(w/v) polypeptone, 0.1%(w/v) $KH_2PO_4$, 0.2%(w/v) $MgSO_4{\cdot}7H_2O$, and 1.0%(w/v) $Na_2CO_3$. In treatment of various dyes using Erlenmeyer flasks, the removal effciencies of Disperse Blue 87, Disperse Yellow 64, Disperse Red 60, Acid Blue 193, Acid Red 138, and Direct Yellow 23 were found to be 76%, 71%, 58%, 93%, 94%, and 90% respectively after 24hrs reaction of alkalophilic strain Pseudomonas sp. YBE-12.