• Title/Summary/Keyword: CNN Feature

Search Result 309, Processing Time 0.028 seconds

A Study on Person Re-Identification System using Enhanced RNN (확장된 RNN을 활용한 사람재인식 시스템에 관한 연구)

  • Choi, Seok-Gyu;Xu, Wenjie
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.15-23
    • /
    • 2017
  • The person Re-identification is the most challenging part of computer vision due to the significant changes in human pose and background clutter with occlusions. The picture from non-overlapping cameras enhance the difficulty to distinguish some person from the other. To reach a better performance match, most methods use feature selection and distance metrics separately to get discriminative representations and proper distance to describe the similarity between person and kind of ignoring some significant features. This situation has encouraged us to consider a novel method to deal with this problem. In this paper, we proposed an enhanced recurrent neural network with three-tier hierarchical network for person re-identification. Specifically, the proposed recurrent neural network (RNN) model contain an iterative expectation maximum (EM) algorithm and three-tier Hierarchical network to jointly learn both the discriminative features and metrics distance. The iterative EM algorithm can fully use of the feature extraction ability of convolutional neural network (CNN) which is in series before the RNN. By unsupervised learning, the EM framework can change the labels of the patches and train larger datasets. Through the three-tier hierarchical network, the convolutional neural network, recurrent network and pooling layer can jointly be a feature extractor to better train the network. The experimental result shows that comparing with other researchers' approaches in this field, this method also can get a competitive accuracy. The influence of different component of this method will be analyzed and evaluated in the future research.

2D Emotion Classification using Short-Time Fourier Transform of Pupil Size Variation Signals and Convolutional Neural Network (동공크기 변화신호의 STFT와 CNN을 이용한 2차원 감성분류)

  • Lee, Hee-Jae;Lee, David;Lee, Sang-Goog
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1646-1654
    • /
    • 2017
  • Pupil size variation can not be controlled intentionally by the user and includes various features such as the blinking frequency and the duration of a blink, so it is suitable for understanding the user's emotional state. In addition, an ocular feature based emotion classification method should be studied for virtual and augmented reality, which is expected to be applied to various fields. In this paper, we propose a novel emotion classification based on CNN with pupil size variation signals which include not only various ocular feature information but also time information. As a result, compared to previous studies using the same database, the proposed method showed improved results of 5.99% and 12.98% respectively from arousal and valence emotion classification.

Fast and Robust Face Detection based on CNN in Wild Environment (CNN 기반의 와일드 환경에 강인한 고속 얼굴 검출 방법)

  • Song, Junam;Kim, Hyung-Il;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1310-1319
    • /
    • 2016
  • Face detection is the first step in a wide range of face applications. However, detecting faces in the wild is still a challenging task due to the wide range of variations in pose, scale, and occlusions. Recently, many deep learning methods have been proposed for face detection. However, further improvements are required in the wild. Another important issue to be considered in the face detection is the computational complexity. Current state-of-the-art deep learning methods require a large number of patches to deal with varying scales and the arbitrary image sizes, which result in an increased computational complexity. To reduce the complexity while achieving better detection accuracy, we propose a fully convolutional network-based face detection that can take arbitrarily-sized input and produce feature maps (heat maps) corresponding to the input image size. To deal with the various face scales, a multi-scale network architecture that utilizes the facial components when learning the feature maps is proposed. On top of it, we design multi-task learning technique to improve detection performance. Extensive experiments have been conducted on the FDDB dataset. The experimental results show that the proposed method outperforms state-of-the-art methods with the accuracy of 82.33% at 517 false alarms, while improving computational efficiency significantly.

Improvement of Vocal Detection Accuracy Using Convolutional Neural Networks

  • You, Shingchern D.;Liu, Chien-Hung;Lin, Jia-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.729-748
    • /
    • 2021
  • Vocal detection is one of the fundamental steps in musical information retrieval. Typically, the detection process consists of feature extraction and classification steps. Recently, neural networks are shown to outperform traditional classifiers. In this paper, we report our study on how to improve detection accuracy further by carefully choosing the parameters of the deep network model. Through experiments, we conclude that a feature-classifier model is still better than an end-to-end model. The recommended model uses a spectrogram as the input plane and the classifier is an 18-layer convolutional neural network (CNN). With this arrangement, when compared with existing literature, the proposed model improves the accuracy from 91.8% to 94.1% in Jamendo dataset. As the dataset has an accuracy of more than 90%, the improvement of 2.3% is difficult and valuable. If even higher accuracy is required, the ensemble learning may be used. The recommend setting is a majority vote with seven proposed models. Doing so, the accuracy increases by about 1.1% in Jamendo dataset.

Attention-based CNN-BiGRU for Bengali Music Emotion Classification

  • Subhasish Ghosh;Omar Faruk Riad
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.47-54
    • /
    • 2023
  • For Bengali music emotion classification, deep learning models, particularly CNN and RNN are frequently used. But previous researches had the flaws of low accuracy and overfitting problem. In this research, attention-based Conv1D and BiGRU model is designed for music emotion classification and comparative experimentation shows that the proposed model is classifying emotions more accurate. We have proposed a Conv1D and Bi-GRU with the attention-based model for emotion classification of our Bengali music dataset. The model integrates attention-based. Wav preprocessing makes use of MFCCs. To reduce the dimensionality of the feature space, contextual features were extracted from two Conv1D layers. In order to solve the overfitting problems, dropouts are utilized. Two bidirectional GRUs networks are used to update previous and future emotion representation of the output from the Conv1D layers. Two BiGRU layers are conntected to an attention mechanism to give various MFCC feature vectors more attention. Moreover, the attention mechanism has increased the accuracy of the proposed classification model. The vector is finally classified into four emotion classes: Angry, Happy, Relax, Sad; using a dense, fully connected layer with softmax activation. The proposed Conv1D+BiGRU+Attention model is efficient at classifying emotions in the Bengali music dataset than baseline methods. For our Bengali music dataset, the performance of our proposed model is 95%.

Data Preprocessing Method for Lightweight Automotive Intrusion Detection System (차량용 경량화 침입 탐지 시스템을 위한 데이터 전처리 기법)

  • Sangmin Park;Hyungchul Im;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.531-536
    • /
    • 2023
  • This paper proposes a sliding window method with frame feature insertion for immediate attack detection on in-vehicle networks. This method guarantees real-time attack detection by labeling based on the attack status of the current frame. Experiments show that the proposed method improves detection performance by giving more weight to the current frame in CNN computation. The proposed model was designed based on a lightweight LeNet-5 architecture and it achieves 100% detection for DoS attacks. Additionally, by comparing the complexity with conventional models, the proposed model has been proven to be more suitable for resource-constrained devices like ECUs.

A Network Intrusion Security Detection Method Using BiLSTM-CNN in Big Data Environment

  • Hong Wang
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.688-701
    • /
    • 2023
  • The conventional methods of network intrusion detection system (NIDS) cannot measure the trend of intrusiondetection targets effectively, which lead to low detection accuracy. In this study, a NIDS method which based on a deep neural network in a big-data environment is proposed. Firstly, the entire framework of the NIDS model is constructed in two stages. Feature reduction and anomaly probability output are used at the core of the two stages. Subsequently, a convolutional neural network, which encompasses a down sampling layer and a characteristic extractor consist of a convolution layer, the correlation of inputs is realized by introducing bidirectional long short-term memory. Finally, after the convolution layer, a pooling layer is added to sample the required features according to different sampling rules, which promotes the overall performance of the NIDS model. The proposed NIDS method and three other methods are compared, and it is broken down under the conditions of the two databases through simulation experiments. The results demonstrate that the proposed model is superior to the other three methods of NIDS in two databases, in terms of precision, accuracy, F1- score, and recall, which are 91.64%, 93.35%, 92.25%, and 91.87%, respectively. The proposed algorithm is significant for improving the accuracy of NIDS.

Image Retrieval Based on the Weighted and Regional Integration of CNN Features

  • Liao, Kaiyang;Fan, Bing;Zheng, Yuanlin;Lin, Guangfeng;Cao, Congjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.894-907
    • /
    • 2022
  • The features extracted by convolutional neural networks are more descriptive of images than traditional features, and their convolutional layers are more suitable for retrieving images than are fully connected layers. The convolutional layer features will consume considerable time and memory if used directly to match an image. Therefore, this paper proposes a feature weighting and region integration method for convolutional layer features to form global feature vectors and subsequently use them for image matching. First, the 3D feature of the last convolutional layer is extracted, and the convolutional feature is subsequently weighted again to highlight the edge information and position information of the image. Next, we integrate several regional eigenvectors that are processed by sliding windows into a global eigenvector. Finally, the initial ranking of the retrieval is obtained by measuring the similarity of the query image and the test image using the cosine distance, and the final mean Average Precision (mAP) is obtained by using the extended query method for rearrangement. We conduct experiments using the Oxford5k and Paris6k datasets and their extended datasets, Paris106k and Oxford105k. These experimental results indicate that the global feature extracted by the new method can better describe an image.

A Study on the Gender and Age Classification of Speech Data Using CNN (CNN을 이용한 음성 데이터 성별 및 연령 분류 기술 연구)

  • Park, Dae-Seo;Bang, Joon-Il;Kim, Hwa-Jong;Ko, Young-Jun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.11-21
    • /
    • 2018
  • Research is carried out to categorize voices using Deep Learning technology. The study examines neural network-based sound classification studies and suggests improved neural networks for voice classification. Related studies studied urban data classification. However, related studies showed poor performance in shallow neural network. Therefore, in this paper the first preprocess voice data and extract feature value. Next, Categorize the voice by entering the feature value into previous sound classification network and proposed neural network. Finally, compare and evaluate classification performance of the two neural networks. The neural network of this paper is organized deeper and wider so that learning is better done. Performance results showed that 84.8 percent of related studies neural networks and 91.4 percent of the proposed neural networks. The proposed neural network was about 6 percent high.

Object Tracking Method using Deep Learning and Kalman Filter (딥 러닝 및 칼만 필터를 이용한 객체 추적 방법)

  • Kim, Gicheol;Son, Sohee;Kim, Minseop;Jeon, Jinwoo;Lee, Injae;Cha, Jihun;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.495-505
    • /
    • 2019
  • Typical algorithms of deep learning include CNN(Convolutional Neural Networks), which are mainly used for image recognition, and RNN(Recurrent Neural Networks), which are used mainly for speech recognition and natural language processing. Among them, CNN is able to learn from filters that generate feature maps with algorithms that automatically learn features from data, making it mainstream with excellent performance in image recognition. Since then, various algorithms such as R-CNN and others have appeared in object detection to improve performance of CNN, and algorithms such as YOLO(You Only Look Once) and SSD(Single Shot Multi-box Detector) have been proposed recently. However, since these deep learning-based detection algorithms determine the success of the detection in the still images, stable object tracking and detection in the video requires separate tracking capabilities. Therefore, this paper proposes a method of combining Kalman filters into deep learning-based detection networks for improved object tracking and detection performance in the video. The detection network used YOLO v2, which is capable of real-time processing, and the proposed method resulted in 7.7% IoU performance improvement over the existing YOLO v2 network and 20 fps processing speed in FHD images.