• Title/Summary/Keyword: CMOS RF

Search Result 346, Processing Time 0.022 seconds

Extraction of Bias and Gate Length dependent data of Substrate Parameters for RF CMOS Devices (RF CMOS 소자 기판 파라미터의 바이어스 및 게이트 길이 종속데이터 추출)

  • Lee, Yong-Taek;Choi, Mun-Sung;Lee, Seong-Hearn
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.347-350
    • /
    • 2004
  • The substrate parameters of Si MOSFET equivalent circuit model were directly extracted from measured S-Parameters in the GHz region by using simple 2-port parameter equations. Using the above extract ion method, bias and gate length dependent curves of substrate parameters in the RF region are obtained by varying drain voltage at several short channel devices with various gate lengths. These extract ion data will greatly contribute to scalable RF nonlinear substrate modeling.

  • PDF

Reliability Characteristics of Class-E Power Amplifier using Class-F Driving Circuit (Class-F 구동회로를 사용하는 Class-E 전력 증폭기의 신뢰성)

  • Choi, Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.287-290
    • /
    • 2006
  • A class-E CMOS RF(Radio frequency) power amplifier with a 1.8 Volt power supply is designed using $0.25{\mu}m$ standard CMOS technology. To drive the class-E power amplifier, a Class-F RF power amplifier is used and the reliability characteristics are studied with a class-E load network. After one year of operating the power amplifier with an RF choke, the PAE(Power Added Efficiency) decreases from 60% to 47% and the output power decreases 29%. However, when a finite DC-feed inductor is used with the load, the PAE decreases from 60% to 53% and the output power decreases only 19%. The simulated results demonstrate that the class-E power amplifier with a finite DC-feed inductor exhibits superior reliability characteristics.

Single-ended Differential RF Circuit Topologies Utilizing Complementary MOS Devices

  • Kim, Bonkee;Ilku Nam;Lee, Kwyro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.7-18
    • /
    • 2002
  • Single-ended differential RF circuit topologies fully utilizing complementary characteristics of both NMOS and PMOS are proposed, which have inherent advantage of both single-ended and differential circuits. Using this concept, we propose a CCPP (Complementary CMOS parallel push-pull) amplifier which has single-ended input/output with differential amplifying characteristics, leading to more than 30 dB improvement on $IIP_2$. In addition, complementary resistive mixer is also proposed, which provides not only differential IF outputs from single-ended RF input, but much better linearity as well as isolation characteristics. Experimental results using $0.35{\;}\mu\textrm{m}$ CMOS process show that, compared with conventional NMOS resistive mixer, the proposed mixer shows 15 dB better LO-to-IF isolation, 4.6 dB better $IIP_2$, and 4.5 dB better $IIP_3$performances.

Design and Fabrication of 1.2GHz range RF Transmitter and Receiver for Bi-directional Capsule Endoscopes (양방향 캡슐형 내시경용 1.2GHz 대역 RF 송수신기 설계 및 제작)

  • 장경만;문연관;류원열;윤영섭;조진호;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.81-85
    • /
    • 2003
  • The Bi-directional Wireless Capsule endoscope con sists of CMOS Image sensor, FPGA, LED, Battery, DC to DC Converter, Transmitter, Receiver and Antennas. The RF transmitter at 1.2GHz range is designed and fabricated with 10 mm(diameter)x1.6 mm(thickness) dimension considering the maximum permission exposure(MPE), system size, power consumption, linearity and modulation method. The fabricated RF receiver at 400MHz range can demodulate the external signals so as to control the behavior of CMOS image sensor. four LEDs and Transmitter.

  • PDF

Quadrature VCO as a Subharmonic Mixer

  • Oh, Nam-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.81-88
    • /
    • 2021
  • This paper proposes two types of subharmonic RF receiver front-end (called LMV) where, in a single stage, quadrature voltage-controlled oscillator (QVCO) is stacked on top of a low noise amplifier. Since the QVCO itself plays the role of the single-balanced subharmonic mixer with the dc current reuse technique by stacking, the proposed topology can remove the RF mixer component in the RF front-end and thus reduce the chip size and the power consumption. Another advantage of the proposed topologies is that many challenges of the direct conversion receiver can be easily evaded with the subharmonic mixing in the QVCO itself. The intermediate frequency signal can be directly extracted at the center taps of the two inductors of the QVCO. Using a 65 nm complementary metal oxide semiconductor (CMOS) technology, the proposed subharmonic RF front-ends are designed. Oscillating at around 2.4 GHz band, the proposed subharmonic LMVs are compared in terms of phase noise, voltage conversion gain and double sideband noise figure. The subharmonic LMVs consume about 330 ㎼ dc power from a 1-V supply.

A CMOS RF Power Detector Using an AGC Loop (자동 이득제어 루프를 이용한 CMOS RF 전력 검출기)

  • Lee, Dongyeol;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.101-106
    • /
    • 2014
  • This paper presents a wide dynamic range radio-frequency (RF) root-mean-square (RMS) power detector using an automatic gain control (AGC) loop. The AGC loop consists of a variable gain amplifier (VGA), RMS conversion block and gain control block. The VGA exploits dB-linear gain characteristic of the cascade VGA. The proposed circuit utilizes full-wave squaring and generates a DC voltage proportional to the RMS of an input RF signal. The proposed RMS power detector operates from 500MHz to 5GHz. The detecting input signal range is from 0 dBm to -70 dBm or more with a conversion gain of -4.53 mV/dBm. The proposed RMS power detector is designed in a 65-nm 1.2-V CMOS process, and dissipates a power of 5 mW. The total active area is $0.0097mm^2$.

A 13.56 MHz CMOS Multi-Stage Rectifier for Wireless Power Transfer in Biomedical Applications (바이오응용 무선전력전달을 위한 13.56 MHz CMOS 다단 정류기)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.35-41
    • /
    • 2013
  • An efficient multi-stage rectifier for wireless power transfer in deep implant medical devices is implemented using $0.18-{\mu}m$ CMOS technology. The presented three-stage rectifier employs a cross-coupled topology to boost a small input AC signal from the external device to produce a 1.2-1.5 V output DC signal for the implant device. The designed rectifier achieves a maximum measured power conversion efficiency of 70% at 13.56 MHz under the conditions of a low 0.6-Vpp RF input signal with a $10-k{\Omega}$ output load resistance.

A CMOS TX Leakage Canceller Using an Autotransformer for RFID Application (오토트랜스포머를 이용한 RFID용 CMOS 송신 누설 신호 제거기)

  • Choi, In-Duck;Kwon, Ick-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.784-789
    • /
    • 2011
  • In this paper, a tunable integrated transmitter leakage canceller based on an autotransformer for ultra-high-frequency (UHF) RFID readers is presented. The proposed TX leakage canceller consists of an autotransformer, a digital tuning capacitor, a voltage controlled tuning resistor, and a compensating amplifier, and it is designed using 0.13 ${\mu}m$ 1-poly 6-metal RF CMOS process. The simulation results show that the proposed structure has over 55 dB rejection characteristic between a transmitter and a receiver and a 2.5 dB of the RX insertion loss. The TX leakage canceller can be digitally tuned from 825 MHz to 985 MHz with the tuning capacitor and it can be fully integrated.

Design Issues of CMOS VCO for RF Transceivers

  • Ryu, Seong-Han
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This paper describes CMOS VCO circuit design procedures and techniques for multi-band/multi-standard RF transceivers. The proposed techniques enable a 4 GHz CMOS VCO to satisfy all requirements for Quad-band GSMIEDGE and WCDMA standards by achieving a good trade-off among important specifications, phase noise, power consumption, modulation performance, and chip area efficiency. To meet the very stringent GSM T/Rx phase noise and wide frequency range specifications, the VCO utilizes bond-wire inductors with high-quality factor, an 8-bit coarse tune capbank for low VCO gain(30$\sim$50 MHz/V) and an on-chip $2^{nd}$ harmonic noise filter. The proposed VCO is implemented in $0.13{\mu}m$ CMOS technology. The measured tuning range is about 34 %(3.17 to 4.49 GHz). The VCO exhibits a phase noise of -123 dBc/Hz at 400 kHz offset and -145 dBc/Hz at 3 MHz offset from a 900 MHz carrier after LO chain. The calculated figure of merit(FOM) is -183.5 dBc/Hz at 3 MHz offset. This fully integrated VCO occupies $0.45{\times}0.9\;mm^2$.