• Title/Summary/Keyword: CMOS DAC

Search Result 127, Processing Time 0.023 seconds

Design of the Low-Power Continuous-Time Sigma-Delta Modulator for Wideband Applications (광대역 시스템을 위한 저전력 시그마-델타 변조기)

  • Kim, Kunmo;Park, Chang-Joon;Lee, Sanghun;Kim, Sangkil;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • In this paper, we present the design of a 20MHz bandwidth 3rd-order continuous-time low-pass sigma-delta modulator with low-noise and low-power consumption. The bandwidth of the system is sufficient to accommodate LTE and other wireless network standards. The 3rd-order low-pass filter with feed-forward architecture achieves the low-power consumption as well as the low complexity. The system uses 3bit flash quantizer to provide fast data conversion. The current-steering DAC achieves low-power and improved sensitivity without additional circuitries. Cross-coupled transistors are adopted to reduce the current glitches. The proposed system achieves a peak SNDR of 65.9dB with 20MHz bandwidth and power consumption of 32.65mW. The in-band IM3 is simulated to be 69dBc with 600mVp-p two tone input tones. The circuit is designed in a 0.18-um CMOS technology and is driven by 500MHz sampling rate signal.

A 40fJ/c-s 1 V 10 bit SAR ADC with Dual Sampling Capacitive DAC Topology

  • Kim, Bin-Hee;Yan, Long;Yoo, Jerald;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • A 40 fJ/c-s, 1 V, 10-bit SAR ADC is presented for energy constrained wearable body sensor network application. The proposed 10-bit dual sampling capacitive DAC topology reduces switching energy by 62% compared with 10-bit conventional SAR ADC. Also, it is more robust to capacitor mismatch than the conventional architecture due to its cancelling effect of each capacitive DAC. The proposed SAR ADC is fabricated in 0.18 ${\mu}m$ 1P6M CMOS technology and occupies 1.17 $mm^2$ including pads. It dissipates only 1.1 ${\mu}W$ with 1 V supply voltage while operating at 100 kS/s.

I/Q channel 12-Bit 120MHz CMOS D/A Converter for WLAN (무선랜용 I/Q 채널 12bit 120MHz CMOS D/A 변환기 설계)

  • Ha, Sung-Min;Nam, Tae-Kyu;Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.83-89
    • /
    • 2006
  • This paper describes the design of I/Q channel 12bit Digital-to-Analog Converter(DAC) which shows the conversion rate of 120MHz and the power supply of 3.3V with 0.35um CMOS n-well 1-poly 4-metal process for advanced wireless transceiver. The proposed DAC utilizes 4-bit thermometer decoder with 3 stages for minimum glitch energy and linearity error. Also, using a optimized 4bit thermometer decoder for the decrement of the chip area. Integral nonlinearity(INL) of ${\pm}1.6LSB$ and differential nonlinearity(DNL) of ${\pm}1.3LSB$ have been measured. In single tone test, the ENOB of the proposed 12bit DAC is 10.5bit and SFDR of 73dB(@ Fs=120MHz, Fin=1MHz) is measured, respectively. Dual-tone test SFDR is 61 dB (@ Fs=100MHz, Fin=1.5MHz, 2MHz). Glitch energy of 31 pV.s is measured. The converter consumes a total of 105mW from 3.3-V power supply.

Design of A 12-Bit 100-MHz CMOS Digital-to-Analog Converter (12 비트 100 MHz CMOS 디지털/아날로그 변환기의 설계)

  • Lee, Ju-Sang;Choi, Ill-Hoon;Kim, Gyu-Hyun;Yu, Sang-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.609-612
    • /
    • 2002
  • In this paper, a 12-bit 100-MHz CMOS current steering digital-to-analog converter is designed. In the D/A converter, a driver circuit using a dynamic latch is implemented to obtain low glitch and thermometer decoder is used for low DNL errors, guaranteed monotonicity, reduced stitching noise. And a threshold voltage-compensated current source. The D/A converter is designed with 0.35-$\mu m$ CMOS technology at 3.3 V power supply and simulated with HSPICE. The maximum power dissipation of the designed DAC is 143 mW.

  • PDF

CMOS Programmable Interface Circuit for Capacitive MEMS Gyroscope (MEMS 용량형 각속도 센서용 CMOS 프로그래머블 인터페이스 회로)

  • Ko, Hyoung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.13-21
    • /
    • 2011
  • In this paper, the CMOS programmable interface circuit for MEMS gyroscope is presented, and evaluated with the MEMS sensing element. The circuit includes the front-end charge amplifier with 10 bit programmable capacitor arrays, 9 bit DAC for accurate offset calibration, and 10 bit PGA for accurate gain calibration. The self oscillation loop with automatic gain control operates properly. The offset error and gain error after calibration are measured to be 0.36 %FSO and 0.19 %FSO, respectively. The noise equivalent resolution and bias instability are measured to be 0.016 deg/sec and 0.012 deg/sec, respectively. The calibration capability of this circuit can reduce the variations of the output offset and gain, and this can enhance the manufacturability and can improve the yield.

A CMOS Duty Cycle Corrector Using Dynamic Frequency Scaling for Coarse and Fine Tuning Adjustment (코오스와 파인 조정을 위한 다이나믹 주파수 스케일링 기법을 사용하는 CMOS 듀티 사이클 보정 회로)

  • Han, Sangwoo;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.142-147
    • /
    • 2012
  • This paper presents a mixed-mode CMOS duty-cycle corrector (DCC) circuit that has a dynamic frequency scaling (DFS) counter and coarse and fine tuning adjustments. A higher duty-cycle correction accuracy and smaller jitter have been achieved by utilizing the DFS counter that reduces the bit-switching glitch effect of a digital to analog converter (DAC). The proposed circuit has been designed using a 0.18-${\mu}m$ CMOS process. The measured duty cycle error is less than ${\pm}1.1%$ for a wide input duty-cycle range of 25-75% over a wide freqeuncy range of 0.5-1.5 GHz.

The Third-Order Multibit Sigma-Delta Modulator with Data Weighted Averaging (Data Weighted Averaging을 이용한 3차 멀티비트 Sigma-Delta 변조기)

  • 김선홍;최석우;조성익;김동용
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.107-114
    • /
    • 2004
  • This paper presents block and timing diagrams of the DWA(Data Weighted Averaging) to optimize a feedback time delay of the sigma-delta modulator. Through the MATLAB modeling, the optimized coefficients of the integrators are obtained to design the modulator. The fully differential SC integrators, feedback DAC, 9-level quantizer, and DWA are designed by considering the nonideal characteristics of the modulator. The designed third-order multibit modulator is fabricated in a 0.35${\mu}{\textrm}{m}$ CMOS process. The modulator achieves 75dB signal-to-noise ratio and 74dB dynamic range at 1.2Vp-p 825kHz input signal and 52.8MHE sampling frequency.

Sigma-Delta Modulator using a novel FDPA(Feedback Delay Path Addition) Technique (새로운 FDPA 기법을 사용한 시그마-델타 변조기)

  • Jung, Eui-Hoon;Kim, Jae-Bung;Cho, Seong-Ik
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.511-516
    • /
    • 2013
  • This paper presents a SDM using the FDPA technique. The FDPA technique is the added feedback path which is the delayed path of DAC output. The designed SDM increases the SNR by adding the delayed digital feedback path. The proposed SDM is easily implemented by eliminating the analog feedback path. Through the MATLAB modeling, the optimized coefficients are obtained to design the SDM. The designed SDM has a power consumption of $220{\mu}W$ and SNR(signal to noise ratio) of 81dB at the signal-bandwidth of 20KHz and sampling frequency of 2.56MHz. The SDM is designed using the $0.18{\mu}m$ standard CMOS process.

A 10-bit 10-MS/s Asynchronous SAR analog-to-digital converter with digital-to-analog converter using MOM capacitor (MOM 커패시터를 사용한 디지털-아날로그 변환기를 가진 10-bit 10-MS/s 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.129-134
    • /
    • 2014
  • This paper presents a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) which consists of a digital-to-analog converter (DAC), a SAR logic, and a comparator. The designed asynchronous SAR ADC with a rail-to-rail input range uses a binary weighted DAC using metal-oxide-metal (MOM) capacitor to improve sampling rate. The proposed 10-bit 10-MS/s asynchronous SAR ADC is fabricated using a 0.18-${\mu}m$ CMOS process and its active area is $0.103mm^2$. The power consumption is 0.37 mW when the voltage of supply is 1.1 V. The measured SNDR are 54.19 dB and 51.59 dB at the analog input frequency of 101.12 kHz and 5.12 MHz, respectively.

CMOS Interconnect Electronics Architecture for Reliable and Scalable Quantum Computer (확장성 신뢰성 갖춘 양자 컴퓨터를 위한 CMOS 기반 제어 및 센싱 회로 기술)

  • Jusung Kim;Junghwan Han;Jae-Won Nam;Kunhee Cho
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 2023
  • The current circuit technology that individually connects each qubit to a control circuit at room temperature has limitations in achieving scalability and reliability of a quantum computer. With the advent of cryogenic CMOS interconnect electronics, it is expected to dramatically improve the interconnect complexity, system reliability and size, and price. In this paper, we introduce the CMOS integrated sensing and control technology platform overcoming the problems caused by the fragile and sensitive characteristics of qubit.