• Title/Summary/Keyword: CBIR(Content-Based Image Retrieval)

Search Result 87, Processing Time 0.031 seconds

Color Correlogram using Combined RGB and HSV Color Spaces for Image Retrieval (RGB와 HSV 칼라 형태를 조합하여 사용한 칼라 코렐로그램 영상 검색)

  • An, Young-Eun;Park, Jong-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.513-519
    • /
    • 2007
  • Color correlogram is widely used in content-based image retrieval (CBIR) because it extracts not only the color distribution of pixels in images like color histogram, but also extracts the spatial information of pixels in the images. The color correlogram uses single color space. Therefore, the color correlograms does not have robust discriminative features. In this paper, we use both RGB and HSV color spaces together for the color correlogram to achieve better discriminative features. The proposed algorithm is tested on a large database of images and the results are compared with the single color space color correlogram. In simulation results, the proposed algorithm 5.63 average retrieval rank less than single color space correlogram.

Color Image Query Using Hierachical Search by Region of Interest with Color Indexing

  • Sombutkaew, Rattikorn;Chitsobhuk, Orachat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.810-813
    • /
    • 2004
  • Indexing and Retrieving images from large and varied collections using image content as a key is a challenging and important problem in computer vision application. In this paper, a color Content-based Image Retrieval (CBIR) system using hierarchical Region of Interest (ROI) query and indexing is presented. During indexing process, First, The ROIs on every image in the image database are extracted using a region-based image segmentation technique, The JSEG approach is selected to handle this problem in order to create color-texture regions. Then, Color features in form of histogram and correlogram are then extracted from each segmented regions. Finally, The features are stored in the database as the key to retrieve the relevant images. As in the retrieval system, users are allowed to select ROI directly over the sample or user's submission image and the query process then focuses on the content of the selected ROI in order to find those images containing similar regions from the database. The hierarchical region-of-interest query is performed to retrieve the similar images. Two-level search is exploited in this paper. In the first level, the most important regions, usually the large regions at the center of user's query, are used to retrieve images having similar regions using static search. This ensures that we can retrieve all the images having the most important regions. In the second level, all the remaining regions in user's query are used to search from all the retrieved images obtained from the first level. The experimental results using the indexing technique show good retrieval performance over a variety of image collections, also great reduction in the amount of searching time.

  • PDF

Content-Based Image Retrieval of Chest CT with Convolutional Neural Network for Diffuse Interstitial Lung Disease: Performance Assessment in Three Major Idiopathic Interstitial Pneumonias

  • Hye Jeon Hwang;Joon Beom Seo;Sang Min Lee;Eun Young Kim;Beomhee Park;Hyun-Jin Bae;Namkug Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.281-290
    • /
    • 2021
  • Objective: To assess the performance of content-based image retrieval (CBIR) of chest CT for diffuse interstitial lung disease (DILD). Materials and Methods: The database was comprised by 246 pairs of chest CTs (initial and follow-up CTs within two years) from 246 patients with usual interstitial pneumonia (UIP, n = 100), nonspecific interstitial pneumonia (NSIP, n = 101), and cryptogenic organic pneumonia (COP, n = 45). Sixty cases (30-UIP, 20-NSIP, and 10-COP) were selected as the queries. The CBIR retrieved five similar CTs as a query from the database by comparing six image patterns (honeycombing, reticular opacity, emphysema, ground-glass opacity, consolidation and normal lung) of DILD, which were automatically quantified and classified by a convolutional neural network. We assessed the rates of retrieving the same pairs of query CTs, and the number of CTs with the same disease class as query CTs in top 1-5 retrievals. Chest radiologists evaluated the similarity between retrieved CTs and queries using a 5-scale grading system (5-almost identical; 4-same disease; 3-likelihood of same disease is half; 2-likely different; and 1-different disease). Results: The rate of retrieving the same pairs of query CTs in top 1 retrieval was 61.7% (37/60) and in top 1-5 retrievals was 81.7% (49/60). The CBIR retrieved the same pairs of query CTs more in UIP compared to NSIP and COP (p = 0.008 and 0.002). On average, it retrieved 4.17 of five similar CTs from the same disease class. Radiologists rated 71.3% to 73.0% of the retrieved CTs with a similarity score of 4 or 5. Conclusion: The proposed CBIR system showed good performance for retrieving chest CTs showing similar patterns for DILD.

Similar Satellite Image Search using SIFT (SIFT를 이용한 유사 위성 영상 검색)

  • Kim, Jung-Bum;Chung, Chin-Wan;Kim, Deok-Hwan;Kim, Sang-Hee;Lee, Seok-Lyong
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.379-390
    • /
    • 2008
  • Due to the increase of the amount of image data, the demand for searching similar images is continuously increasing. Therefore, many researches about the content-based image retrieval (CBIR) are conducted to search similar images effectively. In CBIR, it uses image contents such as color, shape, and texture for more effective retrieval. However, when we apply CBIR to satellite images which are complex and pose the difficulty in using color information, we can have trouble to get a good retrieval result. Since it is difficult to use color information of satellite images, we need image segmentation to use shape information by separating the shape of an object in a satellite image. However, because satellite images are complex, image segmentation is hard and poor image segmentation results in poor retrieval results. In this paper, we propose a new approach to search similar images without image segmentation for satellite images. To do a similarity search without image segmentation, we define a similarity of an image by considering SIFT keypoint descriptors which doesn't require image segmentation. Experimental results show that the proposed approach more effectively searches similar satellite images which are complex and pose the difficulty in using color information.

Development of Traffic Light Automatic Discrimination System Using Digital Image Processing Technology (디지털영상처리 기술을 이용한 교통신호등 자동 판별 시스템 개발)

  • Kim, Sun-Dong;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.92-99
    • /
    • 2009
  • This paper established the range of the wavelength of traffic lights to detection the color of traffic lights and the color component segmentation with the range of the wavelength. Development of traffic light automatic discrimination system is consists of the color detection and the traffic lights recognition. In this thesis, it established the range of the wavelength of traffic lights to detection the color of traffic lights and the color segmentation with the range of the wavelength. By the segmentation, the traffic light colors(red, orange and green) can be detected and the background is changed into gray image. Next, we proposed the algorithm which can detect the area of traffic lights in the various surroundings with the wavelet transformation algorithm. Also, we proposed traffic lights recognition algorithm using between the edge operator and the Hausdorff distance algorithm based on CBIR(Content-based Image retrieval). Therefore, the proposed algorithm is more superior to the conventional algorithm by experimenting with the illumination including the traffic lights and the backgrounds with various images.

Efficient Content-Based Image Retrieval Method using Shape and Color feature (형태와 칼러성분을 이용한 효율적인 내용 기반의 이미지 검색 방법)

  • Youm, Sung-Ju;Kim, Woo-Saeng
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.733-744
    • /
    • 1996
  • Content-based image retrieval(CBIR) is an image data retrieval methodology using characteristic values of image data those are generated by system automatically without any caption or text information. In this paper, we propose a content-based image data retrieval method using shape and color features of image data as characteristic values. For this, we present some image processing techniques used for feature extraction and indexing techniques based on trie and R tree for fast image data retrieval. In our approach, image query result is more reliable because both shape and color features are considered. Also, we how an image database which implemented according to our approaches and sample retrieval results which are selected by our system from 200 sample images, and an analysis about the result by considering the effect of characteristic values of shape and color.

  • PDF

Shape Description and Retrieval Using Included-Angular Ternary Pattern

  • Xu, Guoqing;Xiao, Ke;Li, Chen
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.737-747
    • /
    • 2019
  • Shape description is an important and fundamental issue in content-based image retrieval (CBIR), and a number of shape description methods have been reported in the literature. For shape description, both global information and local contour variations play important roles. In this paper a new included-angular ternary pattern (IATP) based shape descriptor is proposed for shape image retrieval. For each point on the shape contour, IATP is derived from its neighbor points, and IATP has good properties for shape description. IATP is intrinsically invariant to rotation, translation and scaling. To enhance the description capability, multiscale IATP histogram is presented to describe both local and global information of shape. Then multiscale IATP histogram is combined with included-angular histogram for efficient shape retrieval. In the matching stage, cosine distance is used to measure shape features' similarity. Image retrieval experiments are conducted on the standard MPEG-7 shape database and Swedish leaf database. And the shape image retrieval performance of the proposed method is compared with other shape descriptors using the standard evaluation method. The experimental results of shape retrieval indicate that the proposed method reaches higher precision at the same recall value compared with other description method.

Visual Feature Extraction for Image Retrieval using Wavelet Coefficient’s Fuzzy Homogeneity and High Frequency Energy (웨이브릿 계수의 퍼지 동질성과 고주파 에너지를 이용한 영상 검색용 특징벡터 추출)

  • 박원배;류은주;송영준
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • In this paper, we propose a new visual feature extraction method for content-based image retrieval(CBIR) based on wavelet transform which has both spatial-frequency characteristic and multi-resolution characteristic. We extract visual features for each frequency band in wavelet transformation and use them to CBIR. The lowest frequency band involves spacial information of original image. We extract L feature vectors using fuzzy homogeneity in the wavelet domain, which consider both the wavelet coefficients and the spacial information of each coefficient. Also, we extract 3 feature vectors wing the energy values of high frequency bands, and store those to image database. As a query, we retrieve the most similar image from image database according to the 10 largest homograms(normalized fuzzy homogeneity vectors) and 3 energy values. Simulation results show that the proposed method has good accuracy in image retrieval using 90 texture images.

  • PDF

A New Three-dimensional Integrated Multi-index Method for CBIR System

  • Zhang, Mingzhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.993-1014
    • /
    • 2021
  • This paper proposes a new image retrieval method called the 3D integrated multi-index to fuse SIFT (Scale Invariant Feature Transform) visual words with other features at the indexing level. The advantage of the 3D integrated multi-index is that it can produce finer subdivisions in the search space. Compared with the inverted indices of medium-sized codebook, the proposed method increases time slightly in preprocessing and querying. Particularly, the SIFT, contour and colour features are fused into the integrated multi-index, and the joint cooperation of complementary features significantly reduces the impact of false positive matches, so that effective image retrieval can be achieved. Extensive experiments on five benchmark datasets show that the 3D integrated multi-index significantly improves the retrieval accuracy. While compared with other methods, it requires an acceptable memory usage and query time. Importantly, we show that the 3D integrated multi-index is well complementary to many prior techniques, which make our method compared favorably with the state-of-the-arts.

Relevance Feedback using Region-of-interest in Retrieval of Satellite Images (위성영상 검색에서 사용자 관심영역을 이용한 적합성 피드백)

  • Kim, Sung-Jin;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.434-445
    • /
    • 2009
  • Content-based image retrieval(CBIR) is the retrieval technique which uses the contents of images. However, in contrast to text data, multimedia data are ambiguous and there is a big difference between system's low-level representation and human's high-level concept. So it doesn't always mean that near points in the vector space are similar to user. We call this the semantic-gap problem. Due to this problem, performance of image retrieval is not good. To solve this problem, the relevance feedback(RF) which uses user's feedback information is used. But existing RF doesn't consider user's region-of-interest(ROI), and therefore, irrelevant regions are used in computing new query points. Because the system doesn't know user's ROI, RF is proceeded in the image-level. We propose a new ROI RF method which guides a user to select ROI from relevant images for the retrieval of complex satellite image, and this improves the accuracy of the image retrieval by computing more accurate query points in this paper. Also we propose a pruning technique which improves the accuracy of the image retrieval by using images not selected by the user in this paper. Experiments show the efficiency of the proposed ROI RF and the pruning technique.