• Title/Summary/Keyword: CAD Design

Search Result 2,273, Processing Time 0.033 seconds

The Effects of Facial Attractiveness and Appropriateness of Clothing on The Task Performance Evaluation (얼굴 매럭선과 의복 적절성이 과제 수행능력 판단에 미치는 영향)

  • 정명선;김재숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.3_4
    • /
    • pp.412-421
    • /
    • 2002
  • The main purpose of this study was to examine whether there exist physical attractiveness stereotype, ‘what is beautiful is good’on the evaluation of stimulus person’s task performance in present Korea. This study also examine the effects of the appropriateness of the stimulus person’s clothing and subjects’sexes on the task performance evaluation. The index of the physical attractiveness of this study was the facial attractiveness judged by 30 female university students. The appropriateness of clothing was manipulated by 4 types of clothing perceived appropriate for two assumed situations by female university students. Three female faces having high, medium, and low attractiveness were simulated with the same body dressed four types of clothing using CAD system, and a total of 12 stimulus persons were created. A total of 524 male and female(262 of male, 262 of female) university students from 3 universities in Kwangju, Korea were participated as subjects in this study. The design for the experiment was a $3\;{\times}\;4\;{\times}\;2$ randomaized factorial, with three levels of facial attractiveness (high, medium, low), and four types attire(formal-masculine, formal-feminine, casual-masculine, casual-feminine), two kinds of context (job interview, dating) in which perceptions were occurred. The data were analysed using MANOVA, Duncan test and F-test. The results were as fellows: 1. The stimulus person’s facial attractiveness exerted significant positive effects on the evaluation of task performance in both of two assumed situations (p<.001, respectively). 2. The appropriateness of stimulus person’s clothing did not influence on the task evaluation in both of two assumed situations. 3. The gender of subjects did not influenced the task performance evaluation in both of two assumed situations.

Specification and Synthesis of Speed-independent Circuit using VHDL (VHDL을 이용한 속도 독립 회로의 기술과 합성)

  • Jeong, Seong-Tae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1919-1928
    • /
    • 1999
  • There are no standard language for the specification of speed-independent circuits because existing specification methods are designed appropriately to each synthesis methodology. This paper suggests a method of using VHDL, a standard hardware description language, for the specification and synthesis of speed-independent circuits. Because VHDL is a multi-purpose language, we define a subset of VHDL which can be used for the synthesis. We transform the VHDL description into a signal transition graph and then synthesize speed-independent circuits by using a previous synthesis algorithm which uses a signal transition graph as the specification method. We suggest a systematic transformation method which transforms each VHDL statement into a partial signal transition graph and then merges them into a signal transition graph. This work is a step towards to the development of an integrated framework in which we can utilizes the existing CAD tools based on VHDL. Also, this work will enable a easier migration of the current circuit designers into asynchronous circuit design.

  • PDF

A Study on the Mitigation of Welding Distortion of a Precision Component for Automobile Transmission (자동차 변속기용 정밀 부품의 용접변형 감소화에 관한 연구)

  • Chung, Hoi-Yoon;Kim, Jae-Woong;Yun, Seok-Chul
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.31-37
    • /
    • 2012
  • In recent years, a demand for precision-welding is increasing in wide industrial fields for getting a high quality welded structures. Although laser welding is commonly used for precision-welding, gas tungsten arc (GTA) welding is also attempted as a precision-welding due to the cost benefit. However, welding heat causes an uneven temperature distribution leading to welding deformation. Since it causes geometric errors and degrades product quality, welding distortion recently rises as an important issue in the field of automobile parts. To control welding deformation, it is needed to design in shapes that can maximize stiffness against deformation during welding; control the welding sequence; minimize heat input; and weld allowing reverse deformation; etc. Thus it is necessary to find the one, among such approaches, that can minimize the deformation range by mathematical analysis and understand how effective it would be when it is actually used in industrial fields. This study performs analyses by numerical calculations and experiments for the De-Tent Lever, one of transmission part that requires precision the most among automobile parts, as the subject of experiment. Decrease in welding deformation is required for this part, since there is currently a trouble in guaranteeing precision due to angular deformation by welding between boss and plate. Finally the ways to minimize welding deformation has been suggested in this study through analyses on it.

Restoration of anterior teeth with dental implant using multilayer zirconia (다층 지르코니아를 이용한 임플란트 전치부 수복 증례)

  • Lee, Sunghee;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kwon, Kung-Rock;Kim, Hyeong-Seob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.469-477
    • /
    • 2021
  • For successful restoration of maxillary anterior implants, both pink esthetics and white esthetics must be satisfied. For pink esthetic part, the role of appropriate provisional prosthesis restoration is important, and for white esthetic part, the color and shape of the definitive prosthesis is important. Multilayer zirconia can be used for natural tooth appearance due to the higher transparency of the incisal area compared to the conventional monolithic zirconia. Therefore, in this case, white esthetic part was achieved through multilayer zirconia after recovering function and esthetics through appropriate provisional prosthesis in a patient who lost the maxillary anterior teeth.

Monolithic zirconia crowns: effect of thickness reduction on fatigue behavior and failure load

  • Prott, Lea Sophia;Spitznagel, Frank Akito;Bonfante, Estevam Augusto;Malassa, Meike Anne;Gierthmuehlen, Petra Christine
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.269-280
    • /
    • 2021
  • PURPOSE. The objective of this study was to evaluate the effect of thickness reduction and fatigue on the failure load of monolithic zirconia crowns. MATERIALS AND METHODS. 140 CAD-CAM fabricated crowns (3Y-TZP, inCorisTZI, Dentsply-Sirona) with different ceramic thicknesses (2.0, 1.5, 1.0, 0.8, 0.5 mm, respectively, named G2, G1.5, G1, G0.8, and G0.5) were investigated. Dies of a mandibular first molar were made of composite resin. The zirconia crowns were luted with a resin composite cement (RelyX Unicem 2 Automix, 3M ESPE). Half of the specimens (n = 14 per group) were mouth-motion-fatigued (1.2 million cycles, 1.6 Hz, 200 N/ 5 - 55℃, groups named G2-F, G1.5-F, G1-F, G0.8-F, and G0.5-F). Single-load to failure was performed using a universal testing-machine. Fracture modes were analyzed. Data were statistically analyzed using a Weibull 2-parameter distribution (90% CI) to determine the characteristic strength and Weibull modulus differences among the groups. RESULTS. Three crowns (21%) of G0.8 and five crowns (36%) of G0.5 showed cracks after fatigue. Characteristic strength was the highest for G2, followed by G1.5. Intermediate values were observed for G1 and G1-F, followed by significantly lower values for G0.8, G0.8-F, and G0.5, and the lowest for G0.5-F. Weibull modulus was the lowest for G0.8, intermediate for G0.8-F and G0.5, and significantly higher for the remaining groups. Fatigue only affected G0.5-F. CONCLUSION. Reduced crown thickness lead to reduced characteristic strength, even under failure loads that exceed physiological chewing forces. Fatigue significantly reduced the failure load of 0.5 mm monolithic 3Y-TZP crowns.

Numerical Analysis of Natural Convection inside Spray Coating Room on Temperature Distributions (자연대류를 고려한 스프레이 코팅 룸에서의 온도분포 해석)

  • Kim, Nam Woong;Kim, Bo-Seon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.425-430
    • /
    • 2019
  • Zinc coatings are widely used because of their environmental friendliness and high performance. In general, the coating temperature is a major factor in determining the coating layer thickness and coating quality. In the case of a zinc coating, a uniform and appropriate coating temperature is required. In this study, a thermal flow simulation of the air flow was performed to analyze the temperature distribution of a zinc spray coating room in a natural convection state. Using SolidWorks, modeling was performed for two spray coating rooms, a preheating room, and a drying room, and a thermal flow coupled analysis was performed using ANSYS-FLUENT. As a result of the analysis, the temperature distribution characteristics in the spray coating rooms were determined. It was found that the present temperature was below the target temperature of $25^{\circ}C$. Simulations were conducted for two different boundary conditions (one with a heater added and another with the open part closed). The simulation results show that the method of closing the open part is better than adding the heater.

Development of Sports Brassiere Pattern Using 3D Shaping Technology (3차원 쉐이핑 기술을 활용한 스포츠 브래지어 개발)

  • Kim, Soyoung
    • Fashion & Textile Research Journal
    • /
    • v.21 no.4
    • /
    • pp.480-487
    • /
    • 2019
  • This study used 3D technology to develop a multi-functional sports brassiere with increased comfort and fit that can be worn as a base layer during exercise or as underwear. A 75A size industrial lingerie figure was used to develop a standard pattern. 3D tools for scanning and pattern making, such as Vivid 910, Geomagic Design X, 2C-AN and Yuka CAD were used. The sports brassiere was designed as a tank top style with dual structure and linings attached to a pad utilized with a sport brassiere mold cup. 3D outer and lining's pattern was differently developed in consideration of the body's curvature with pad's shape and structure. Shoulder and neck part reduction rates were adjusted to increase the neck areas fit that considered the nude pattern's structure due to uncomfortableness felt by wearers who were uncomfortable with the neck areas fit on existing brand products. The reduction rate was also set differently on each part. For example, the reduction rate on outer side panel was set strongly to increase the breast's volume. Two products, developed by a 3D sports brassiere and previously released product, were worn on 8 subjects in their 20's to evaluate fit, comfort, and purchase preferences. The evaluation proved that newly developed 3D products were superior to comparative products. The results of the clothing pressure measurement indicate that the newly developed sports brassiere's front part had less pressure on upper bust and shoulder areas compared to comparative products as well as showed less pressure on the back side, which shows improved wearing comfort compared to comparative products.

An Advanced Prediction Technology of Assembly Tolerance for Vehicle Door (차량도어 조립공차 예측기술 개발)

  • Jeoung, Nam-Yeoung;Cho, Jin-Hyung;Oh, Hyun-Seung;Lee, Sae Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.91-100
    • /
    • 2018
  • The setting of values on door hinge mounting compensation for door assembly tolerance is a constant quality issue in vehicle production. Generally, heuristic methods are used in satisfying appropriate door gap and level difference, flushness to improve quality. However, these methods are influenced by the engineer's skills and working environment and result an increasement of development costs. In order to solve these problems, the system which suggests hinge mounting compensation value using CAE (Computer Aided Engineering) analysis is proposed in this study. A structural analysis model was constructed to predict the door gap and level difference, flushness through CAE based on CAD (Computer Aided Design) data. The deformations of 6-degrees of freedom which can occur in real vehicle doors was considered using a stiffness model which utilize an analysis model. The analysis model was verified using 3D scanning of real vehicle door hinge deformation. Then, system model which applying the structural analysis model suggested the final adjustment amount of the hinge mounting to obtain the target door gap and the level difference by inputting the measured value. The proposed system was validated using the simulation and showed a reliability in vehicle hinge mounting compensation process. This study suggests the possibility of using the CAE analysis for setting values of hinge mounting compensation in actual vehicle production.

Evaluation the clinical acceptability of the marginal and internal gaps of fixed partial denture fabricated with additive manufacturing technology (적층 가공방식에 따른 고정성 치과보철물의 변연 및 내면 적합도 평가연구)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.40 no.4
    • /
    • pp.209-215
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the clinical acceptability of the marginal and internal gap of Co-Cr metal copings fabricated with stereolithography (SLA). Methods: Titanium master dies were milled after scanning of the prepared tooth (n=30). For group I, Co-Cr metal copings were made from conventional lost-wax technique(LWT, n=10). For group II, the master dies were scanned and designed with CAD system. Then, metal copings were milled with Co-Cr(SUB, n=10). For group III(ADD, n=10), the scanning and design procedures were same as group II and burn-out resins were fabricated with SLA device. The marginal and internal discrepancies were measured under an optical microscope(100x) on ten reference points and were statistically analyzed with one-way ANOVA(${\alpha}=.05$). Results: The mean total discrepancies were $53.76{\pm}12.42{\mu}m$ in the LWT group and $69.82{\pm}15.48{\mu}m$ in the ADD group. The SUB group showed the largest total mean value $110.33{\pm}13.77{\mu}m$. There was statistically significant difference between the SUB and the other groups(P<0.05). Conclusion : Co-Cr metal copings fabricated with SLA technology showed clinically acceptable value on marginal and internal gap and there was no statistically significant difference between conventional lost-wax technique and SLA.

Maritime Target Image Generation and Detection in a Sea Clutter Environment at High Grazing Angle (높은 지표각에서 해상 클러터 환경을 고려한 해상 표적 영상 생성 및 탐지)

  • Jin, Seung-Hyeon;Lee, Kyung-Min;Woo, Seon-Keol;Kim, Yoon-Jin;Kwon, Jun-Beom;Kim, Hong-Rak;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.407-417
    • /
    • 2019
  • When a free-falling ballistic missile intercepts a maritime target in a sea clutter environment at high grazing angle, detection performance of the ballistic missile's seeker can be rapidly degraded by the effect of sea clutter. To solve this problem, it is necessary to verify the performance of maritime target detection via simulations based on various scenarios. We accomplish this by applying a two-dimensional cell -averaging constant false alarm rate detector to a two-dimensional radar image, which is generated by merging a sea clutter signal at high grazing angle with a maritime target signal corresponding to the signal-to-clutter ratio. Simulation results using a computer-aided design model and commercial numerical electromagnetic solver in various scenarios show that the performance of maritime target detection significantly depends on the grazing and azimuth angles.