DOI QR코드

DOI QR Code

Monolithic zirconia crowns: effect of thickness reduction on fatigue behavior and failure load

  • 투고 : 2021.05.26
  • 심사 : 2021.09.14
  • 발행 : 2021.10.30

초록

PURPOSE. The objective of this study was to evaluate the effect of thickness reduction and fatigue on the failure load of monolithic zirconia crowns. MATERIALS AND METHODS. 140 CAD-CAM fabricated crowns (3Y-TZP, inCorisTZI, Dentsply-Sirona) with different ceramic thicknesses (2.0, 1.5, 1.0, 0.8, 0.5 mm, respectively, named G2, G1.5, G1, G0.8, and G0.5) were investigated. Dies of a mandibular first molar were made of composite resin. The zirconia crowns were luted with a resin composite cement (RelyX Unicem 2 Automix, 3M ESPE). Half of the specimens (n = 14 per group) were mouth-motion-fatigued (1.2 million cycles, 1.6 Hz, 200 N/ 5 - 55℃, groups named G2-F, G1.5-F, G1-F, G0.8-F, and G0.5-F). Single-load to failure was performed using a universal testing-machine. Fracture modes were analyzed. Data were statistically analyzed using a Weibull 2-parameter distribution (90% CI) to determine the characteristic strength and Weibull modulus differences among the groups. RESULTS. Three crowns (21%) of G0.8 and five crowns (36%) of G0.5 showed cracks after fatigue. Characteristic strength was the highest for G2, followed by G1.5. Intermediate values were observed for G1 and G1-F, followed by significantly lower values for G0.8, G0.8-F, and G0.5, and the lowest for G0.5-F. Weibull modulus was the lowest for G0.8, intermediate for G0.8-F and G0.5, and significantly higher for the remaining groups. Fatigue only affected G0.5-F. CONCLUSION. Reduced crown thickness lead to reduced characteristic strength, even under failure loads that exceed physiological chewing forces. Fatigue significantly reduced the failure load of 0.5 mm monolithic 3Y-TZP crowns.

키워드

참고문헌

  1. The American College of Prosthodontics. Facts & Figures 2021. Available from: https://www.gotoapro.org/facts-figures/. Accessed May 6, 2021.
  2. Grand View Research Inc. Dental crowns & bridges market size worth $3.8 Billion By 2026 June 2019. Available from: https://www.grandviewresearch.com/press-release/global-dental-crowns-bridges-market. Accessed May 6, 2021.
  3. Zhao K, Pan Y, Guess PC, Zhang XP, Swain MV. Influence of veneer application on fracture behavior of lithium-disilicate-based ceramic crowns. Dent Mater 2012;28:653-60. https://doi.org/10.1016/j.dental.2012.02.011
  4. Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent Mater 2015;31:603-23. https://doi.org/10.1016/j.dental.2015.02.011
  5. Makhija SK, Lawson NC, Gilbert GH, Litaker MS, McClelland JA, Louis DR, Gordan VV, Pihlstrom DJ, Meyerowitz C, Mungia R, McCracken MS; National Dental PBRN Collaborative Group. Dentist material selection for single-unit crowns: Findings from the National Dental Practice-Based Research Network. J Dent 2016;55:40-7. https://doi.org/10.1016/j.jdent.2016.09.010
  6. Ma L, Guess PC, Zhang Y. Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses. Dent Mater 2013;29:742-51. https://doi.org/10.1016/j.dental.2013.04.004
  7. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res 2018;97:140-7. https://doi.org/10.1177/0022034517737483
  8. Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil 2010;37:641-52. https://doi.org/10.1111/j.1365-2842.2010.02094.x
  9. Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand 2014;72:145-53. https://doi.org/10.3109/00016357.2013.822098
  10. Lameira DP, Buarque e Silva WA, Andrade e Silva F, De Souza GM. Fracture strength of aged monolithic and bilayer zirconia-based crowns. Biomed Res Int 2015;2015:418641.
  11. Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, Longquan S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014;35:93-101. https://doi.org/10.1016/j.jmbbm.2014.03.014
  12. Miura S, Yamauchi S, Kasahara S, Katsuda Y, Fujisawa M, Egusa H. Clinical evaluation of monolithic zirconia crowns: a failure analysis of clinically obtained cases from a 3.5-year study. J Prosthodont Res 2021;65:148-54. https://doi.org/10.2186/jpr.JPOR_2019_643
  13. Kontonasaki E, Rigos AE, Ilia C, Istantsos T. Monolithic zirconia: an update to current knowledge. optical properties, wear, and clinical performance. Dent J (Basel) 2019;7:90. https://doi.org/10.3390/dj7030090
  14. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res 2013;57:236-61. https://doi.org/10.1016/j.jpor.2013.09.001
  15. Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont 2010;23:434-42.
  16. Swain MV, Mercurio V, Tibballs JE, Tholey M. Thermal induced deflection of a porcelain-zirconia bilayer: Influence of cooling rate. Dent Mater 2019;35:574-84. https://doi.org/10.1016/j.dental.2019.01.019
  17. Vigolo P, Mutinelli S. Evaluation of zirconium-oxide-based ceramic single-unit posterior fixed dental prostheses (FDPs) generated with two CAD/CAM systems compared to porcelain-fused-to-metal single-unit posterior FDPs: a 5-year clinical prospective study. J Prosthodont 2012;21:265-9. https://doi.org/10.1111/j.1532-849X.2011.00825.x
  18. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28:449-56. https://doi.org/10.1016/j.dental.2011.11.024
  19. Nakamura K, Harada A, Inagaki R, Kanno T, Niwano Y, Milleding P, Ortengren U. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand 2015;73:602-8. https://doi.org/10.3109/00016357.2015.1007479
  20. Bomicke W, Rammelsberg P, Stober T, Schmitter M. Short-term prospective clinical evaluation of monolithic and partially veneered zirconia single crowns. J Esthet Restor Dent 2017;29:22-30. https://doi.org/10.1111/jerd.12270
  21. Gunge H, Ogino Y, Kihara M, Tsukiyama Y, Koyano K. Retrospective clinical evaluation of posterior monolithic zirconia restorations after 1 to 3.5 years of clinical service. J Oral Sci 2018;60:154-8. https://doi.org/10.2334/josnusd.17-0176
  22. Sola-Ruiz MF, Baixauli-Lopez M, Roig-Vanaclocha A, Amengual-Lorenzo J, Agustin-Panadero R. Prospective study of monolithic zirconia crowns: clinical behavior and survival rate at a 5-year follow-up. J Prosthodont Res 2021;65:284-90. https://doi.org/10.2186/jpr.JPR_D_20_00034
  23. Tekin YH, Hayran Y. Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness. J Adv Prosthodont 2020;12:283-90. https://doi.org/10.4047/jap.2020.12.5.283
  24. Weigl P, Sander A, Wu Y, Felber R, Lauer HC, Rosentritt M. In-vitro performance and fracture strength of thin monolithic zirconia crowns. J Adv Prosthodont 2018;10:79-84. https://doi.org/10.4047/jap.2018.10.2.79
  25. Sorrentino R, Triulzio C, Tricarico MG, Bonadeo G, Gherlone EF, Ferrari M. In vitro analysis of the fracture resistance of CAD-CAM monolithic zirconia molar crowns with different occlusal thickness. J Mech Behav Biomed Mater 2016;61:328-33. https://doi.org/10.1016/j.jmbbm.2016.04.014
  26. Nordahl N, Vult von Steyern P, Larsson C. Fracture strength of ceramic monolithic crown systems of different thickness. J Oral Sci 2015;57:255-61. https://doi.org/10.2334/josnusd.57.255
  27. Gierthmuehlen P, Rubel A, Stampf S, Spitznagel F. Effect of reduced material thickness on fatigue behavior and failure load of monolithic CAD/CAM PICN molar crowns. Int J Prosthodont 2019;32:71-4. https://doi.org/10.11607/ijp.5946
  28. Dentsply Sirona GmbH. inCoris TZI 2021. Available from: https://manuals.sirona.com/de/digitale-zahnheilkunde/cad-cam-material/incoris-tzi. Accessed May 6, 2021.
  29. Kern M, Strub JR, Lu XY. Wear of composite resin veneering materials in a dual-axis chewing simulator. J Oral Rehabil 1999;26:372-8. https://doi.org/10.1046/j.1365-2842.1999.00416.x
  30. DeLong R, Sakaguchi RL, Douglas WH, Pintado MR. The wear of dental amalgam in an artificial mouth: a clinical correlation. Dent Mater 1985;1:238-42. https://doi.org/10.1016/S0109-5641(85)80050-6
  31. Abernethy R. The New Weibull Handbook. Reliability and statistical analysis for predicting life, safety, survivability, risk, cost and warranty claims. 5th ed. North Palm Beach (FL), 2006.
  32. Ferrario VF, Sforza C, Zanotti G, Tartaglia GM. Maximal bite forces in healthy young adults as predicted by surface electromyography. J Dent 2004;32:451-7. https://doi.org/10.1016/j.jdent.2004.02.009
  33. Ivoclar Vivadent GmbH. IPS e.max ZirCAD Labside -Gebrauchsinformation 2019. Provided by manufacturer. Accessed October 21, 2021.
  34. VITA Zahnfabrik H. Rauter GmbH. VITA YZ Solutions - Working Instructions 2019. Available from: https://www.vita-zahnfabrik.com/de/Technician-Solutions/CAD/CAM/Geruestkonstruktionen/Vollanatomische-Bruecken/VITA-YZ-HT-25899,27568.html. Accessed May 6, 2021.
  35. Baladhandayutham B, Lawson NC, Burgess JO. Fracture load of ceramic restorations after fatigue loading. J Prosthet Dent 2015;114:266-71. https://doi.org/10.1016/j.prosdent.2015.03.006
  36. Skjold A, Schriwer C, Gjerdet NR, Oilo M. Effect of artificial aging on high translucent dental zirconia: simulation of early failure. Eur J Oral Sci 2020;128: 526-34. https://doi.org/10.1111/eos.12739
  37. Cotes C, Arata A, Melo RM, Bottino MA, Machado JP, Souza RO. Effects of aging procedures on the topographic surface, structural stability, and mechanical strength of a ZrO2-based dental ceramic. Dent Mater 2014;30:e396-404. https://doi.org/10.1016/j.dental.2014.08.380
  38. Rosentritt M, Behr M, Gebhard R, Handel G. Influence of stress simulation parameters on the fracture strength of all-ceramic fixed-partial dentures. Dent Mater 2006;22:176-82. https://doi.org/10.1016/j.dental.2005.04.024
  39. Elsayed A, Meyer G, Wille S, Kern M. Influence of the yttrium content on the fracture strength of monolithic zirconia crowns after artificial aging. Quintessence Int 2019;50:344-8.
  40. Blatz MB, Vonderheide M, Conejo J. The effect of resin bonding on long-term success of high-strength ceramics. J Dent Res 2018;97:132-9. https://doi.org/10.1177/0022034517729134
  41. Lawson NC, Khajotia S, Bedran-Russo AK, Frazier K, Park J, Leme-Kraus A, Urquhart O; Council on Scientific Affairs. Bonding crowns and bridges with resin cement: An American Dental Association Clinical Evaluators Panel survey. J Am Dent Assoc 2020;151:796-7. e2. https://doi.org/10.1016/j.adaj.2020.07.023
  42. Guess PC, Zhang Y, Kim JW, Rekow ED, Thompson VP. Damage and reliability of Y-TZP after cementation surface treatment. J Dent Res 2010;89:592-6. https://doi.org/10.1177/0022034510363253
  43. Fernandez-Estevan L, Millan-Martinez D, Fons-Font A, Agustin-Panadero R, Roman-Rodriguez JL. Methodology in specimen fabrication for in vitro dental studies: Standardization of extracted tooth preparation. J Clin Exp Dent 2017;9:e897-e900.
  44. Lawson NC, Jurado CA, Huang CT, Morris GP, Burgess JO, Liu PR, Kinderknecht KE, Lin CP, Givan DA. Effect of surface treatment and cement on fracture load of traditional zirconia (3y), translucent zirconia (5y), and lithium disilicate crowns. J Prosthodont 2019;28:659-65. https://doi.org/10.1111/jopr.13088
  45. Coelho PG, Silva NR, Bonfante EA, Guess PC, Rekow ED, Thompson VP. Fatigue testing of two porcelain-zirconia all-ceramic crown systems. Dent Mater 2009;25:1122-7. https://doi.org/10.1016/j.dental.2009.03.009
  46. Guess PC, Schultheis S, Wolkewitz M, Zhang Y, Strub JR. Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations. J Prosthet Dent 2013;110:264-73. https://doi.org/10.1016/S0022-3913(13)60374-1
  47. Zhang Y, Sailer I, Lawn BR. Fatigue of dental ceramics. J Dent 2013;41:1135-47. https://doi.org/10.1016/j.jdent.2013.10.007
  48. Zhang Y, Lawn B. Long-term strength of ceramics for biomedical applications. J Biomed Mater Res B Appl Biomater 2004;69:166-72.
  49. Zhang Y, Kim JW, Bhowmick S, Thompson VP, Rekow ED. Competition of fracture mechanisms in monolithic dental ceramics: flat model systems. J Biomed Mater Res B Appl Biomater 2009;88:402-11.
  50. Koenig V, Bekaert S, Dupont N, Vanheusden A, Le Goff S, Douillard T, Chevalier J, Djaker N, Lamy de la Chapelle M, Amiard F, Dardenne N, Wulfman C, Mainjot A. Intraoral low-temperature degradation of monolithic zirconia dental prostheses: results of a prospective clinical study with ex vivo monitoring. Dent Mater 2021;37:1134-49. https://doi.org/10.1016/j.dental.2021.03.008
  51. Guilardi LF, Pereira GKR, Giordani JC, Kleverlaan CJ, Valandro LF, Rippe MP. Effect of zirconia surface treatment, resin cement and aging on the load-bearing capacity under fatigue of thin simplified full-contour Y-TZP restorations. J Mech Behav Biomed Mater 2019;97:21-9. https://doi.org/10.1016/j.jmbbm.2019.04.050
  52. Rues S, Huber G, Rammelsberg P, Stober T. Effect of impact velocity and specimen stiffness on contact forces in a weight-controlled chewing simulator. Dent Mater 2011;27:1267-72. https://doi.org/10.1016/j.dental.2011.09.007
  53. Oilo M, Kvam K, Tibballs JE, Gjerdet NR. Clinically relevant fracture testing of all-ceramic crowns. Dent Mater 2013;29:815-23. https://doi.org/10.1016/j.dental.2013.04.026
  54. Nakamura K, Ankyu S, Nilsson F, Kanno T, Niwano Y, Vult von Steyern P, Ortengren U. Critical considerations on load-to-failure test for monolithic zirconia molar crowns. J Mech Behav Biomed Mater 2018;87:180-9. https://doi.org/10.1016/j.jmbbm.2018.07.034
  55. Santana T, Zhang Y, Guess P, Thompson VP, Rekow ED, Silva NR. Off-axis sliding contact reliability and failure modes of veneered alumina and zirconia. Dent Mater 2009;25:892-8. https://doi.org/10.1016/j.dental.2009.01.093
  56. Bonfante EA, Coelho PG, Guess PC, Thompson VP, Silva NR. Fatigue and damage accumulation of veneer porcelain pressed on Y-TZP. J Dent 2010;38:318-24. https://doi.org/10.1016/j.jdent.2009.12.004
  57. Kontonasaki E, Giasimakopoulos P, Rigos AE. Strength and aging resistance of monolithic zirconia: an update to current knowledge. Jpn Dent Sci Rev 2020;56:1-23. https://doi.org/10.1016/j.jdsr.2019.09.002
  58. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32:e327-37. https://doi.org/10.1016/j.dental.2016.09.025
  59. Rosentritt M, Preis V, Behr M, Strasser T. Fatigue and wear behaviour of zirconia materials. J Mech Behav Biomed Mater 2020;110:103970. https://doi.org/10.1016/j.jmbbm.2020.103970