• Title/Summary/Keyword: C. gloeosporioides and Glomerella cingulata

Search Result 17, Processing Time 0.024 seconds

Occurrence of Anthracnose Caused by Glomerella cingulata on Eucaly trees in Korea (Glomerella cingulata에 의한 유카리나무 탄저병 발생)

  • Kwon, Jin-Hyeuk;Jeong, Seon-Gi;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.211-215
    • /
    • 2007
  • Since 2003, anthracnose symptoms on Eucalyptus globulus were observed in farmer's field at Jisepo, Ilwoon-myon, Geoje city, Gyeongnam province, Korea. Typical symptoms of dark brown to black spot appeared on the leaves, twigs, and stems. Infected young trees were wilted, blighted and died eventually. The pathogen isolated from the typical symptom formed gray to dark gray colony on potato dextrose agar and showed optimum growth at $30^{\circ}C$. Conidia were single celled, colorless, cylindrical with obtuse ends, and $9{\sim}22{\times}3{\sim}6{\mu}m$ in size. Appressoria were dark brown, ovate to obovate, and $6{\sim}18{\times}4{\sim}10{\mu}m$ in size. Perithecia were black and globose in shape and $76{\times}274{\mu}m$ in size. Asci were clavate to cylindrical in shape and $42{\sim}76{\times}8{\sim}12{\mu}m$ in size. Ascospores were cylindrical, fusiform, slightly curved at the center, and $10{\sim}23{\times}4{\sim}6{\mu}m$ in size. On the basis of mycological characteristics and pathogenicity test on E. globulus, the pathogen was identified as Glomerella cingulata. This is the first report of the anthracnose on E, globulus caused by G. cingulata in Korea.

High Throughput Screening of Antifungal Metabolites Against Colletotrichum gloeosporioides

  • Ahn, Il-Pyung;Kim, Soon-Ok;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • Colletotrichum gloeosporioides forms an appressorium, a specialized infection structure, to infect its hosts. Among 400 and 600 culture filtrates from fungi and class Actinomycetes, six methanol extracts (A5005, A5314, A5387, A5560, A5597, and A5598) from the class Actinomycetes significantly inhibited appressorium formation in C. gloeosporioides infecting pepper fruits in a dose-dependent manner, while conidial germination was slightly enhanced. Two (A5005 and A5560) of them also exhibited distinctive inhibitory effect on the disease progress of pepper anthracnose. Water fractions of both culture filtrates also specifically inhibited appressorium formation in C. gloeosporioides and pepper anthracnose disease. Inhibition of appressorium formation by culture filtrate of A5005 was partially restored by the exogenous calcium. This results suggests that chemicals within A5005 extents its biological activity through disturbance of intracellular $Ca^{2+}$ regulation during prepenetration morphogenesis by C. gloeosporioides. Together, cell-based and target-oriented screening system used in this study should be applicable for other plant pathogenic fungi prerequisite appressorium formation to infect their hosts.

Analysis of Fungicide Sensitivity and Genetic Diversity among Colletotrichum Species in Sweet Persimmon

  • Gang, Geun-Hye;Cho, Hyun Ji;Kim, Hye Sun;Kwack, Yong-Bum;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.115-122
    • /
    • 2015
  • Anthracnose, caused by Colletotrichum gloeosporioides (C. gloeosporioides; Teleomorph: Glomerella cingulata), is the most destructive disease that affects sweet persimmon production worldwide. However, the biology, ecology, and genetic variations of C. gloeosporioides remain largely unknown. Therefore, in this study, the development of fungicide resistance and genetic diversity among an anthracnose pathogen population with different geographical origins and the exposure of this population to different cultivation strategies were investigated. A total of 150 pathogen isolates were tested in fungicide sensitivity assays. Five of the tested fungicides suppressed mycelial pathogen growth effectively. However, there were significant differences in the sensitivities exhibited by the pathogen isolates examined. Interestingly, the isolates obtained from practical management orchards versus organic cultivation orchards showed no differences in sensitivity to the same fungicide. PCR-restriction fragment length polymorphism (RFLP) analyses were performed to detect internal transcribed spacer regions and the ${\beta}$-tubulin and glutamine synthetase genes of the pathogens examined. Both the glutamine synthetase and ${\beta}$-tubulin genes contained a complex set of polymorphisms. Based on these results, the pathogens isolated from organic cultivation orchards were found to have more diversity than the isolates obtained from the practical management orchards.

Early Detection of Epiphytic Anthracnose Inoculum on Phyllosphere of Diospyros kaki var. domestica

  • Lee, Jung-Han;Han, Ki-Soo;Lee, Sun-Cheol;Shim, Chang-Ki;Bae, Dong-Won;Kim, Dong-Kil;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.247-251
    • /
    • 2004
  • We developed a polyclonal antibody (PAh) based- ELISA system to accurately and rapidly monitor inocula on plant surface before onset of anthracnose. Titer of mouse antisera against conidia of Colletotrichum gloeosporioides was determined by using indirect ELISA. It was high enough to be detectable up to ${\times}$ 12,800 dilutions. Absorbance readings exceeded (1.5even at a 10$^{-5}$ dilution. Sensitivity of PAb was precise enough to detect spore concentration as low as 50 conidia/well by indirect ELISA. PAb1 and PAb2 proved to be very sensitive and highly specific to the target pathogen, C. gloeosporioides, apparently discriminating other unrelated pathogens, or epiphytes. Absorbance values for original isolate exceeded 1.0, but no reaction was detected with other isolates, except three other anthracnose fungi: C. gloeosporioides (pepper strain), Glomerella cingulata (apple strain) and C. lagenarium. Our data suggest that PAb1 and PAb2 bind with the protein epitope that partially contains residues of amino acid, arginine, and Iysine. This kit fulfills the require-ments for detecting inoculums before infection and during onset of anthracnose on sweet persimmon.

Vegetative Compatibility Grouping and Pathogenicity of Colletotrichum gloeosporioides Isolates from Different Host Plants

  • Ahn, Il-Pyung;Kim, Soonok;Im, Kyung-Hwan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.19 no.6
    • /
    • pp.269-273
    • /
    • 2003
  • A total of 57 isolates of Colletotrichum gloeosporioides were recovered from diseased tissues of Hall's crab apple (Malus haliana), 3 cultivars of edible apple (M. pumila var. dulcissima), red pepper (Capsicum annum), and grapevine (Vitis vinifera) fruits. All isolates showed strong virulence on their own host plants. Isolates from edible apple exhibited high level of cultivar specificity in pathogenicity tests. Ten isolates from apple cultivar 'Fuji' were virulent on 'Jonathan' and 'Rall's Genet'. However, 12 isolates from 'Jonathan' and 'Rall's Genet' were not virulent on 'Fuji'. Among the 24 isolates from red pepper, only seven and two isolates were infective on edible apple and grapevine fruits, respectively. All six isolates from grapevine were only virulent on their own host. These isolates were grouped into five vegetative compatibility groups (VCGs), A, B, C, D, and E, by demonstrating heterokaryosis through complementation using nitrate-nonutilizing (nit) mutants. Among them, isolates belong to VCG-A and VCG-D accounted for 24 and 17 isolates; those in VCG-A exhibited wide host range involving Hall's crab apple, all three edible apple cultivars, and red pepper. On the other hand, isolates of VCG-D and VCG-E showed limited host range specific to red pepper and grapevine, respectively. Taken together, the data suggest that among C. gloeosporioides isolates, the concepts of pathotype and/or forma specialis may exist, and that three is a relationship between host specificity and VCG grouping among C. gloeosporioides isolates.

Two Strains of Colletotrichum gloeosporioides Penz. Causing Anthracnose on Pepper Fruits (고추탄저병균 Colletotrichum gloeosporioides Penz.의 2계통)

  • Kim Wan Gyu;Cho Eui Kyoo;Lee Eun Jong
    • Korean Journal Plant Pathology
    • /
    • v.2 no.2
    • /
    • pp.107-113
    • /
    • 1986
  • Each of 48 monoconidial isolates of Colletotrichum gloeosporioides Penz. obtained from diseased fruits of pepper was classified into strain G or strain R based upon pathogenicity to green and red fruits, morphology of conidia, and cultural characteristics in potato dextrose agar. The strain G was designated for isolates to cause anthracnose symptoms both on green and red fruits. All isolates of the strain G produced conidia abundantly. but produced no perithecia and setae in PDA. Conidia of all isolates in the strain G were attenuated or round at one end. The optimum temperature for mycelial growth of strain G was $26-28^{\circ}C$. The mycelia of strain G in PDA appeared to be whitish when young, and turned to be dark in old culture. Symptoms on pepper fruits caused by the strain G were somewhat sunken to be circular to elliptical lesions. Yellowish conidial masse were observed at the center of lesions, and the lesions turned to irregular shape and to reddish brown color in the later stage of disease development. No setae were visible on the acervuli. The strain R was designated for isolates to cause anthracnose symptoms only on red fruits of pepper. All isolates of the strain R produce conidia, and perithecia of Glomerella cingulata (Stonem.) Spauld. & v. Sch. in PDA. Some isolates of the strain R produced setae in culture under fluorescent light. Conidia of all isolates in the strain R were round and blunt at the ends. The optimum temperature for mycelial growth of strain R was the same as that of strain G. The mycelial growth of strain R was faster than that of strain G in PDA. The mycelia of strain R in PDA appeared to be gray to dark. Symptoms on pepper fruits caused by the strain R were circular to irregular black ring-spots Short setae or no setae were visible on the acervuli.

  • PDF

Bioactivity of the Extract of Coptis chinensis: In-vitro Antifungal Activity against Phytophthora capsici and Growth-promotion Effect in Red-pepper (황련 추출물의 고추역병에 대한 In-vitro 항진균 활성 및 고추 생육촉진 효과)

  • Ahn, Seon-Mi;Lee, Dong-Sin;Kim, Mi-Sun;Choi, Su-Ji;Choi, Chung-Sik;Lee, Jung-Bok;Jang, Han-Su;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.280-286
    • /
    • 2009
  • To investigate anti-phytopathogenic fungal activity of Coptis chinensis, the methanol extract and its organic solvent fractions were prepared. Using the extract and the fractions, in-vitro spore-germination inhibition and mycelial-growth inhibition activities were evaluated against Colletotrichum gloeosporioides, Phytohpthora capsici, Pyricularia grisea, Rhizoctonia solani, Botryosphaeri dothidea, Glomerella cingulata, respectively. Treatment of the methanol extract (500 mg/mL) into the spore of phytopathogenic fungi completely inhibited germinations for 5 days, except B. dothidea, and showed strong antifungal activities against P. grisea and B. cinerea, and antioomycetes activity against P. capsici. The minimal growth inhibition concentrations of the methanol extract against P. grisea, B. cinerea and P. capsici were 300, 300, and 500 mg/mL, respectively. For practical application of C. chinensis in red-pepper field, the hot-water extract (1,000 mg/mL) was prepared in commercial facility, after evaluation of heat stability and solvent-extraction yields of antifungal substances. The 3-times leaf-spray of the extract from June to August, 2008 did not show any deleterious effect to red-pepper. In fact, the leaf-spray promoted plant growth including leaf, root and fruit. The average weight and rind of each fruit were increased to 119% and 117% comparison to those of without treatments. Our results suggest that C. chinensis is a useful source for control of red-pepper diseases and plant growth.