• 제목/요약/키워드: C-biharmonic

검색결과 27건 처리시간 0.025초

EXISTENCE OF NONTRIVIAL SOLUTIONS OF A NONLINEAR BIHARMONIC EQUATION

  • Jin, Yinghua;Choi, Q-Heung;Wang, Xuechun
    • Korean Journal of Mathematics
    • /
    • 제17권4호
    • /
    • pp.451-460
    • /
    • 2009
  • We consider the existence of solutions of a nonlinear biharmonic equation with Dirichlet boundary condition, ${\Delta}^2u+c{\Delta}u=f(x, u)$ in ${\Omega}$, where ${\Omega}$ is a bounded open set in $R^N$ with smooth boundary ${\partial}{\Omega}$. We obtain two new results by linking theorem.

  • PDF

POSITIVE SOLUTIONS ON NONLINEAR BIHARMONIC EQUATION

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • 제5권1호
    • /
    • pp.29-33
    • /
    • 1997
  • In this paper we investigate the existence of positive solutions of a nonlinear biharmonic equation under Dirichlet boundary condition in a bounded open set ${\Omega}$ in $\mathbf{R}^n$, i.e., $${\Delta}^2u+c{\Delta}u=bu^{+}+s\;in\;{\Omega},\\u=0,\;{\Delta}u=0\;on\;{\partial}{\Omega}$$.

  • PDF

ON SLANT CURVES IN S-MANIFOLDS

  • Guvenc, Saban;Ozgur, Cihan
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.293-303
    • /
    • 2018
  • In this paper, we consider biharmonic slant curves in S-space forms. We obtain a main theorem, which gives us four different cases to find curvature conditions for these curves. We also give examples of slant curves in ${\mathbb{R}}^{2n+s}(-3s)$.

ON THE CONFORMAL TRIHARMONIC MAPS

  • Ouakkas, Seddik;Reguig, Yasmina
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.607-629
    • /
    • 2022
  • In this paper, we give the necessary and sufficient condition for the conformal mapping ϕ : (ℝn, g0) → (Nn, h) (n ≥ 3) to be triharmonic where we prove that the gradient of its dilation is a solution of a fourth-order elliptic partial differential equation. We construct some examples of triharmonic maps which are not biharmonic and we calculate the trace of the stress-energy tensor associated with the triharmonic maps.

GEOMETRY OF GENERALIZED BERGER-TYPE DEFORMED METRIC ON B-MANIFOLD

  • Abderrahim Zagane
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1281-1298
    • /
    • 2023
  • Let (M2m, 𝜑, g) be a B-manifold. In this paper, we introduce a new class of metric on (M2m, 𝜑, g), obtained by a non-conformal deformation of the metric g, called a generalized Berger-type deformed metric. First we investigate the Levi-Civita connection of this metric. Secondly we characterize the Riemannian curvature, the sectional curvature and the scalar curvature. Finally, we study the proper biharmonicity of the identity map and of a curve on M with respect to a generalized Berger-type deformed metric.

FINITE ELEMENT APPROXIMATION OF THE DISCRETE FIRST-ORDER SYSTEM LEAST SQUARES FOR ELLIPTIC PROBLEMS

  • SHIN, Byeong-Chun
    • 대한수학회논문집
    • /
    • 제20권3호
    • /
    • pp.563-578
    • /
    • 2005
  • In [Z. Cai and B. C. Shin, SIAM J. Numer. Anal. 40 (2002), 307-318], we developed the discrete first-order system least squares method for the second-order elliptic boundary value problem by directly approximating $H(div){\cap}H(curl)-type$ space based on the Helmholtz decomposition. Under general assumptions, error estimates were established in the $L^2\;and\;H^1$ norms for the vector and scalar variables, respectively. Such error estimates are optimal with respect to the required regularity of the solution. In this paper, we study solution methods for solving the system of linear equations arising from the discretization of variational formulation which possesses discrete biharmonic term and focus on numerical results including the performances of multigrid preconditioners and the finite element accuracy.

Stress state around cylindrical cavities in transversally isotropic rock mass

  • Lukic, Dragan C.;Prokic, Aleksandar D.;Brcic, Stanko V.
    • Geomechanics and Engineering
    • /
    • 제6권3호
    • /
    • pp.213-233
    • /
    • 2014
  • The present paper is dealing with the investigation of the stress field around the infinitely long cylindrical cavity, of a circular cross section, contained in the transversally isotropic elastic continuum. Investigation is based upon the determination of the stress function that satisfies the biharmonic equation, for the given boundary conditions and for rotationaly symmetric loading. The solution of the partial differential equation of the problem is given in the form of infinite series of Bessel's functions. Determination of the stress-strain field around cavities is a common requirement for estimation of safety of underground rock excavations.