Acknowledgement
The author expresses his gratitude to the referee for his valuable comments and suggestions towards the improvement of the paper. The author would also like to thank Prof. Ahmed Mohammed Cherif, University Mustapha Stambouli of Mascara for his helpful suggestions and valuable comments.
References
- M. Altunbas, R. Simsek, and A. Gezer, A study concerning Berger type deformed Sasaki metric on the tangent bundle, J. Math. Phys. Anal. Geom. 15 (2019), no. 4, 435-447. https://doi.org/10.15407/mag15.04.435
- M. Altunbas, R. Simsek, and A. Gezer, Some harmonic problems on the tangent bundle with a Berger-type deformed Sasaki metric, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82 (2020), no. 2, 37-42.
- P. Baird, A. Fardoun, and S. Ouakkas, Conformal and semi-conformal biharmonic maps, Ann. Global Anal. Geom. 34 (2008), no. 4, 403-414. https://doi.org/10.1007/s10455-008-9118-8
- P. Baird and D. Kamissoko, On constructing biharmonic maps and metrics, Ann. Global Anal. Geom. 23 (2003), no. 1, 65-75. https://doi.org/10.1023/A:1021213930520
- P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press, Oxford University Press, Oxford, 2003. https://doi.org/10.1093/acprof:oso/9780198503620.001.0001
- A. Balmus, Biharmonic properties and conformal changes, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 50 (2004), no. 2, 361-372.
- A. Benkartab and A. M. Cherif, New methods of construction for biharmonic maps, Kyungpook Math. J. 59 (2019), no. 1, 135-147. https://doi.org/10.5666/KMJ.2019. 59.1.135
- A. Benkartab and A. M. Cherif, Deformations of metrics and biharmonic maps, Commun. Math. 28 (2020), no. 3, 263-275. https://doi.org/10.2478/cm-2020-0022
- G. Chen, Y. Liu, and J. Wei, Nondegeneracy of harmonic maps from ℝ2 to 𝕊2, Discrete Contin. Dyn. Syst. 40 (2020), no. 6, 3215-3233. https://doi.org/10.3934/dcds.2019228
- M. Crasmareanu, Killing potentials, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 45 (1999), no. 1, 169-176.
- N. E. Djaa, F. Latti, and A. Zagane, Proper biharmonic maps on tangent bundle, Commun. Math. 31 (2023), no. 1, 137-154. https://doi.org/10.46298/cm.10305
- N. E. Djaa and A. Zagane, Harmonicity of Mus-gradient metric, Int. J. Maps Math. 5 (2022), no. 1, 61-77.
- N. E. Djaa and A. Zagane, Some results on the geometry of a non-conformal deformation of a metric, Commun. Korean Math. Soc. 37 (2022), no. 3, 865-879. https://doi.org/10.4134/CKMS.c210207
- J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385-524. https://doi.org/10.1112/blms/20.5.385
- J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. https://doi.org/10.2307/2373037
- J. J. Konderak, On harmonic vector fields, Publ. Mat. 36 (1992), no. 1, 217-228. https://doi.org/10.5565/PUBLMAT_36192_17
- A. A. Salimov, M. Iscan, and F. Etayo, Paraholomorphic B-manifold and its properties, Topology Appl. 154 (2007), no. 4, 925-933. https://doi.org/10.1016/j.topol.2006.10.003
- A. Yampolsky, On geodesics of tangent bundle with fiberwise deformed Sasaki metric over Kahlerian manifold, J. Math. Phys. Anal. Geom. 8 (2012), no. 2, 177-189.
- A. Zagane, A study of harmonic sections of tangent bundles with vertically rescaled Berger-type deformed Sasaki metric, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 47 (2021), no. 2, 270-285. https://doi.org/10.30546/2409-4994.47.2.270
- A. Zagane and N. E. Djaa, Notes about a harmonicity on the tangent bundle with vertical rescaled metric, Int. Electron. J. Geom. 15 (2022), no. 1, 83-95. https://doi.org/10.36890/iejg.1033998
- A. Zagane and A. Gezer, Vertical rescaled Cheeger-Gromoll metric and harmonicity on the cotangent bundle, Adv. Stud. Euro-Tbil. Math. J. 15 (2022), no. 3, 11-29. https://doi.org/10.32513/asetmj/19322008221