• 제목/요약/키워드: C-biharmonic

검색결과 27건 처리시간 0.019초

f-BIHARMONIC SUBMANIFOLDS AND f-BIHARMONIC INTEGRAL SUBMANIFOLDS IN LOCALLY CONFORMAL ALMOST COSYMPLECTIC SPACE FORMS

  • Aslam, Mohd;Karaca, Fatma;Siddiqui, Aliya Naaz
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.595-606
    • /
    • 2022
  • In this paper, we have studied f-biharmonic submanifolds in locally conformal almost cosymplectic space forms and have derived condition on second fundamental form for f-biharmonic submanifolds. Also, we have discussed its integral submanifolds in locally conformal almost cosymplectic space forms.

EXISTENCE OF NONTRIVIAL SOLUTIONS OF THE NONLINEAR BIHARMONIC SYSTEM

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.135-143
    • /
    • 2008
  • We investigate the existence of nontrivial solutions of the nonlinear biharmonic system with Dirichlet boundary condition $$(0.1)\;\begin{array}{lcr}{\Delta}^2{\xi}+c{\Delta}{\xi}={\mu}h({\xi}+{\eta})\;in{\Omega},\\{\Delta}^2{\eta}+c{\Delta}{\eta}={\nu}h({\xi}+{\eta})\;in{\Omega},\end{array}$$ where $c{\in}R$ and ${\Delta}^2$ denote the biharmonic operator.

  • PDF

LK-BIHARMONIC HYPERSURFACES IN SPACE FORMS WITH THREE DISTINCT PRINCIPAL CURVATURES

  • Aminian, Mehran
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1221-1244
    • /
    • 2020
  • In this paper we consider LK-conjecture introduced in [5, 6] for hypersurface Mn in space form Rn+1(c) with three principal curvatures. When c = 0, -1, we show that every L1-biharmonic hypersurface with three principal curvatures and H1 is constant, has H2 = 0 and at least one of the multiplicities of principal curvatures is one, where H1 and H2 are first and second mean curvature of M and we show that there is not L2-biharmonic hypersurface with three disjoint principal curvatures and, H1 and H2 is constant. For c = 1, by considering having three principal curvatures, we classify L1-biharmonic hypersurfaces with multiplicities greater than one, H1 is constant and H2 = 0, proper L1-biharmonic hypersurfaces which H1 is constant, and L2-biharmonic hypersurfaces which H1 and H2 is constant.

MULTIPLE SOLUTIONS FOR THE SYSTEM OF NONLINEAR BIHARMONIC EQUATIONS WITH JUMPING NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.551-560
    • /
    • 2007
  • We prove the existence of solutions for the system of the nonlinear biharmonic equations with Dirichlet boundary condition $$\{^{-{\Delta}^2u-c{\Delta}u+{\gamma}(bu^+-av^-)=s{\phi}_1\;in\;{\Omega},\;}_{-{\Delta}^2u-c{\Delta}u+{\delta}(bu^+-av^-)=s{\phi}_1\;in\;{\Omega}}$$, where $u^+$ = max{u, 0}, ${\Delta}^2$ denotes the biharmonic operator and ${\phi}_1$ is the positive eigenfunction of the eigenvalue problem $-{\Delta}$ with Dirichlet boundary condition.

  • PDF

THE PROOF OF THE EXISTENCE OF THE THIRD SOLUTION OF A NONLINEAR BIHARMONIC EQUATION BY DEGREE THEORY

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.165-172
    • /
    • 2008
  • We investigate the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition,${\Delta}^2u+c{\Delta}u=bu^{+}+s$, in ­${\Omega}$, where $c{\in}R$ and ${\Delta}^2$ denotes the biharmonic operator. We show by degree theory that there exist at least three solutions of the problem.

  • PDF

ON THE EXISTENCE OF THE THIRD SOLUTION OF THE NONLINEAR BIHARMONIC EQUATION WITH DIRICHLET BOUNDARY CONDITION

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제20권1호
    • /
    • pp.81-95
    • /
    • 2007
  • We are concerned with the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition, ${\Delta}^2u+c{\Delta}u=g(u)$, in ${\Omega}$, where $c{\in}R$ and ${\Delta}^2$ denotes the biharmonic operator. We show that there exists at least three solutions of the above problem under the suitable condition of g(u).

  • PDF

HARMONIC AND BIHARMONIC MAPS ON DOUBLY TWISTED PRODUCT MANIFOLDS

  • Boulal, Abdelhamid;Djaa, Mustapha;Ouakkas, Seddik
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.273-291
    • /
    • 2018
  • In this paper we investigate the geometry of doubly twisted product manifolds and we study the harmonicity and biharmonicity of maps between doubly twisted product Riemannian manifold. Also we characterize the conformal biharmonic maps and construct some new proper biharmonic maps.

SOME RESULTS OF EXPONENTIALLY BIHARMONIC MAPS INTO A NON-POSITIVELY CURVED MANIFOLD

  • Han, Yingbo
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1651-1670
    • /
    • 2016
  • In this paper, we investigate exponentially biharmonic maps u : (M, g) ${\rightarrow}$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain that if $\int_{M}e^{\frac{p{\mid}r(u){\mid}^2}{2}{\mid}{\tau}(u){\mid}^pdv_g$ < ${\infty}$ ($p{\geq}2$), $\int_{M}{\mid}{\tau}(u){\mid}^2dv_g$ < ${\infty}$ and $\int_{M}{\mid}d(u){\mid}^2dv_g$ < ${\infty}$, then u is harmonic. When u is an isometric immersion, we get that if $\int_{M}e^{\frac{pm^2{\mid}H{\mid}^2}{2}}{\mid}H{\mid}^qdv_g$ < ${\infty}$ for 2 ${\leq}$ p < ${\infty}$ and 0 < q ${\leq}$ p < ${\infty}$, then u is minimal. We also obtain that any weakly convex exponentially biharmonic hypersurface in space form N(c) with $c{\leq}0$ is minimal. These results give affirmative partial answer to conjecture 3 (generalized Chen's conjecture for exponentially biharmonic submanifolds).

SOME RESULTS OF p-BIHARMONIC MAPS INTO A NON-POSITIVELY CURVED MANIFOLD

  • HAN, YINGBO;ZHANG, WEI
    • 대한수학회지
    • /
    • 제52권5호
    • /
    • pp.1097-1108
    • /
    • 2015
  • In this paper, we investigate p-biharmonic maps u : (M, g) $\rightarrow$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain that if ${\int}_M|{\tau}(u)|^{{\alpha}+p}dv_g$ < ${\infty}$ and ${\int}_M|d(u)|^2dv_g$ < ${\infty}$, then u is harmonic, where ${\alpha}{\geq}0$ is a nonnegative constant and $p{\geq}2$. We also obtain that any weakly convex p-biharmonic hypersurfaces in space formN(c) with $c{\leq}0$ is minimal. These results give affirmative partial answer to Conjecture 2 (generalized Chen's conjecture for p-biharmonic submanifolds).