DOI QR코드

DOI QR Code

HARMONIC AND BIHARMONIC MAPS ON DOUBLY TWISTED PRODUCT MANIFOLDS

  • Received : 2017.03.10
  • Accepted : 2017.03.29
  • Published : 2018.01.31

Abstract

In this paper we investigate the geometry of doubly twisted product manifolds and we study the harmonicity and biharmonicity of maps between doubly twisted product Riemannian manifold. Also we characterize the conformal biharmonic maps and construct some new proper biharmonic maps.

Keywords

Acknowledgement

Supported by : Algerian National Research Agency CNEPRU, LGACA Laboratory

References

  1. P. Baird, Harmonic Maps between Riemannain Manifolds, Clarendon Press Oxford 2003.
  2. A. Balmus, S. Montaldo, and C. Oniciuc, Biharmonic maps between warped product manifolds, J. Geom. Phys. 57 (2007), no. 2, 499-466.
  3. M. Djaa, A. M. Cherif, K. Zegga, and S. Ouakkas, On the generalized of harmonic and bi-harmonic maps, Int. Electron. J. Geom. 5 (2012), no. 1, 1-11.
  4. A. M. Cherif and M. Djaa, Geometry of energy and bienergy variations between Rie-mannian manifolds, Kyungpook Math. J. 55 (2015), no. 3, 715-730. https://doi.org/10.5666/KMJ.2015.55.3.715
  5. J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385-524. https://doi.org/10.1112/blms/20.5.385
  6. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Maths. 86 (1964), 109-160. https://doi.org/10.2307/2373037
  7. S. Ouakkas, Biharmonic maps, conformal deformations and the Hopf maps, Differential Geom. Appl. 26 (2008), no. 5, 495-502. https://doi.org/10.1016/j.difgeo.2008.04.006
  8. S. Ouakkas, R. Nasri, and M. Djaa, On the f-harmonic and f-biharmonic maps, JP J. Geom. Topol. 10 (2010), no. 1, 11-27.