Acknowledgement
The authors are grateful to the referee for the valuable suggestions and comments towards the improvement of the paper.
References
-
C. Baikoussis, D. E. Blair, and T. Koufogiorgos, Integral submanifolds of Sasakian space forms
${\bar{M}}^7$ (k), Results Math. 27 (1995), no. 3-4, 207-226. https://doi.org/10.1007/BF03322826 - D. E. Blair, Contact manifolds. In Contact Manifolds in Riemannian Geometry, Springer, Berlin, Heidelberg, (1976), 1-16.
- D. E. Blair, Riemannian geometry of contact and symplectic manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Ltd., Boston, MA, 2010. https://doi.org/10.1007/978-0-8176-4959-3
- R. Caddeo, S. Montaldo, and P. Piu, On biharmonic maps, in Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), 286-290, Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001. https://doi.org/10.1090/conm/288/04836
- J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1-68. https://doi.org/10.1112/blms/10.1.1
- J. Eells, Jr., and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. https://doi.org/10.2307/2373037
- D. Fetcu and C. Oniciuc, Explicit formulas for biharmonic submanifolds in Sasakian space forms, Pacific J. Math. 240 (2009), no. 1, 85-107. https://doi.org/10.2140/pjm.2009.240.85
- D. Fetcu and C. Oniciuc, A note on integral C-parallel submanifolds in 𝕊7(c), Rev. Un. Mat. Argentina 52 (2011), no. 1, 33-45.
- D. Fetcu and C. Oniciuc, Biharmonic integral C-parallel submanifolds in 7-dimensional Sasakian space forms, Tohoku Math. J. (2) 64 (2012), no. 2, 195-222. https://doi.org/10.2748/tmj/1341249371
- G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986), no. 4, 389-402.
- F. Karaca, f-biharmonic integral submanifolds in generalized Sasakian space forms, Filomat 33 (2019), no. 9, 2561-2570. https://doi.org/10.2298/fil1909561k
- F. Karaca, f-biminimal submanifolds of generalized space forms, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68 (2019), no. 2, 1301-1315. https://doi.org/10.31801/cfsuasmas.524498
- F. Karaca and C. Ozgur, f-biharmonic and bi-f-harmonic submanifolds of product spaces, Sarajevo J. Math. 13(25) (2017), no. 1, 115-129. https://doi.org/10.5644/sjm
- A. Lotta, Slant submanifolds in contact geometry, Bulletin mathematique de la Societe des Sciences Mathe matiques de Roumanie (1996), 183-198.
- W. Lu, On f-bi-harmonic maps and bi-f-harmonic maps between Riemannian manifolds, Sci. China Math. 58 (2015), no. 7, 1483-1498. https://doi.org/10.1007/s11425-015-4997-1
- Y. Luo and Y.-L. Ou, Some remarks on bi-f-harmonic maps and f-biharmonic maps, Results Math. 74 (2019), no. 3, Paper No. 97, 19 pp. https://doi.org/10.1007/s00025-019-1023-x
- K. Matsumoto, I. Mihai, and R. Rosca, A certain locally conformal almost cosymplectic manifold and its submanifolds, Tensor (N.S.) 51 (1992), no. 1, 91-102.
- Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73-87. https://doi.org/10.4064/cm-57-1-73-87
- Y.-L. Ou, On f-biharmonic maps and f-biharmonic submanifolds, Pacific J. Math. 271 (2014), no. 2, 461-477. https://doi.org/10.2140/pjm.2014.271.461
- Y.-L. Ou, f-biharmonic maps and f-biharmonic submanifolds II, J. Math. Anal. Appl. 455 (2017), no. 2, 1285-1296. https://doi.org/10.1016/j.jmaa.2017.06.033
- J. Roth and A. Upadhyay, f-biharmonic submanifolds of generalized space forms, Results Math. 75 (2020), no. 1, Paper No. 20, 25 pp. https://doi.org/10.1007/s00025-019-1142-4
- M. M. Tripathi, Almost semi-invariant submanifolds of trans-Sasakian manifolds, J. Indian Math. Soc. (N.S.) 62 (1996), no. 1-4, 225-245.
- K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.